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ABSTRACT

This report summarizes the results of a study on nonlinear phenomena
in plasmas with the main emphasis on develoning deterministic theories for
plasma turbulence based on the Ruelle-Takens theory of strange attractors
and on the interaction of solitons. The main results include a demonstra-
tion of the occurrence of turbulence-like solutions in a simplified Zakharov
model for Langmuir turbulence and a number of nonlinear three-wave inter-
actions. The stability of mode-converted lower-hybrid solitons is also

studied.
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I. INTRODUCTION

Recently, a considerable amount of work has been performed on plasma
turbulence. This was partially motivated by the observance of various forms
of turbulence phenomena in plasma heating experiments conducted both in this
country and abroad.

Since plasma turbulence is primarily due to the nonlinear excitation

of collective oscillations having a broad spectrum of frequencies, nonlinear

plasma models must be used in the development of theories for such phenomena.

The classical approach to the theory of plasma turbulence is to regard the
phenomena as stochastic processes. Thus, the description of turbulence
quantities is given in terms of their statistical averages (1],(2]. In
existing theories for plasma turbulence, certain basic assumptions are in-
troduced, such as ergodicity or stationarity of the processes. The validity
of these assumptions is extremely difficult, if not impossible, to establish
by experiments. Furthermore, various phenomena at the onset of turbulence
cannot be explained by statistical theories.

Motivated by such deficiences in the statistical theories of turbu-
lence, attempts have been made to develop turbulence theory using determin-
istic models. In 1973, Kingsep, Rudakov and Sudan [3] suggested that strong
Langmuir turbulence could be described in terms of a system of interacting
Langmuir solitary waves. Subsequently, a considerable amount of analytical
and numerical work has been done based on this idea for the one-dimensional
case [4],[5]. It was suggested that a similar theory could be developed for
the multi-dimensional case. Goldman and Nicholson, however, showed that
multi-dimensional spherically symmetric Langmuir solitons, under adiabatic

conditions and negligible ion inertia effects, are unstable (6]. Similar
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conclusions have been deduced for other cases (7]-[11]. Therefore, further
studies are necessary before definite conclusions can be drawn from the
approach suggested by Kingsep et al.

In early 1978, under the support of AFOSR Grant No. 74-2662, we began
to explore a new direction for developing a deterministic theory for plasma
turbulence. This approach was motivated by the work of Lorenz on determin-
istic nonperiodic flows pertaining to atmospheric turbulence [1] and the
theory of ''strange attractors' proposed by Ruelle and Takens [13]. A remark-
able feature of Lorenz's work is his demonstration of the existence of
turbulence-like solutions of a simple nonlinear third-order ordinary differ-
ential equation with quadratic nonlinear terms. His equation is a highly
simplified model of an incompressible fluid with heat transfer. The results
suggest the possibility of modeling atmospheric turbulence by deterministic
nonlinear differential equations.

The main objective of this study is to develop deterministic theories
for plasma turbulence from the standpoint of the Ruelle and Takens theory
of strange attractors and the interaction of solitary waves. The results

of this study will be sumarized categorically in the subsequent section.




II. RESEARCH SUMMARY

In the study of plasma turbulence via the Ruelle-Takens approach,
attention has been focused on Langmuir turbulence and nonlinear wave-wave
interactions in plasmas. The study of plasma turbulence via the interaction
of solitary waves has been limited to mode-converted lower-hybrid solitons.
The results are summarized below.

A. Nomperiodic Oscillations of Langmuir Waves

In 1978, under the support of AFOSR Grant No. 74-2662, we discovered
that single-mode equations, derived from Zakharov's model for Langmuir turbu-
lence in a plasma in the presence of an external spatially homogeneous
electric field oscillating at the electron plasma frequency, have non-
periodic chaotic solutions whose power spectra have turbulence-like features
[14]. In this simplified model, phenomenological damping terms are intro-
duced; such dissipative terms are essential for the existence of chaotic
oscillations.

During the period covered by this report, we explored further the
observed chaotic oscillations with the objective of achieving some under-
standing of the nature of the onset of these oscillations and their quali-
tative behavior. Our first results consist of estimates for the amplitudes
of the chaotic oscillations. We showed that the magnitude of the high-
frequency electric field oscillations, about some real scalar multiple of
the external electric field E,, satisfies a bound which grows linearly with
lEoll . In addition, the ion density oscillations are contained in a ball
whose radius grows with [|Eg||2. These bounds are consistent with the
numerical solutions. The results were combined with those in [14] and

published recently in the Journal of Mathematical Physics (see Appendix A).
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In order to understand the onset of chaotic oscillations, we determined
numerically the Poincaré mappings associated with various hyperplanes in
the system's state space. It was found that the mappings are quasi-one-
dimensional, but their structures are not sufficiently simple to permit mean-
ingful analytical studies. Finally, a bifurcation analysis of the system was
performed with respect to the damping coefficients. The results are described

in the report [P9] (see Appendix B).

B. Chaottie Solutions of Resonant Three-Wave Interactions
This study began with the following well-known simplified model gov-
erning the nonlinear resonant interaction of three waves with both linear

growth and damping terms:

dA;/dt = v,A; - iVAA, ,

v

d.Az/dt = - 'YzAz - iVAlAa* ’ (1)

: ]
dA,/dt = - YsAy - VA, ]

where the Aj's correspond to the normalized complex wave amplitudes, V
is a real coupling coefficient and the yj's are positive numbers. This
model includes a number of important resonant wave-wave interactions in
plasmas. It was shown that, under certain conditions, the asymptotic
behavior of the solutions of (1) for t-+« can be described by a system

of three real ordinary differential equations. Numerical studies showed
that the reduced system exhibits chaotic oscillations which are sensitive
to variations in the initial conditions. Moreover, the autocovariance func-
tions associated with the chaotic solutions appear to decay as the separa-

tion time tends to «. This suggests that a turbulent state could be
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produced through the nonlinear interaction of a linearly unstable wave with
two linearly damped waves. The preliminary results of this study are de-
scribed in the report [P7] (see Appendix C) published in November, 1979.
Since then, further studies have been made in categorizing general three-
wave interactions which are capable of producing chaotic oscillations. The

results will be described in a forthcoming thesis by K. Masui [P8].

C. Mode-Converted Lower-Hybrid Solitons

It is well known that one-dimensional Langmuir solitons are mndula-
tionally unstable to transverse perturbations. The instability causes the
solitons to collapse and form bunches resembling a turbulent state. Here,
it was shown that the planar mode-converted lower-hybrid solitons are also
unstable to transverse perturbations. Moreover, two distinct classes of
modes are found. In the lowest order. the stability of each class is re-
lated to a particular term of the equation governing the nonlinear evolution

of these waves. The details are described in the report [P5] (see Appen-
dix D).

D. Chaotic Oscillations in Bilinear Systems

It was observed that the mathematical models of may physical proces<es,
including certain nonlinear wave-wave interactions and the Lorenz equation,
can be written in the form: dx/dt = Ax + £(x) , where A is a real nxn
matrix and f is a bilinear function of x . During 1979, chaotic oscilla-
tions in this class of systems were explored from the viewpoint of feedback
control theory. A simple and sufficient condition for the nonexistence of
such oscillations was derived. Ellipsoidal bounds for the amplitudes ?f
chaotic oscillations were also obtained. The results are applicable to the
Lorenz equation and other equations which are known to have chaotic oscilla-

tions. The details are given in report [P6] (see Appendix E).
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III. CONCLUDING REMARKS

Since the initiation of this study., there appears to be a growing
interest in the theory of chaotic oscillations in deterministic nonlinear
dynamical systems and its application to turbulence, as proposed by Ruelle
and Takens. During the period covered by this report, the following confer-
ences and symposia were held both in the US and abroad at which papers on
chaotic oscillations were presented:

(1) International Workshop on Intrinsic Stochasticity in Plasmas,

June 17-23, 1973, Institut d'Etudes Scientifiques de Cargese,

Corse, France.

(2) Anmual Meeting of the Plasma Physics Division, American Physical
Society, November 12-16, 1979, Boston.

(3) Engineering Foundation Converence on New Approaches to Nonlinear

Problems in Dynamics, December 9-14, 1979, Asilomar, California.

(4) International Conference on Nonlinear Dynamics, December 17-21,

1979, New York City.

So far, chaotic oscillations in nonlinear systems have been discovered
mostly through bifurcation analysis and numerical experimentation. There
are no general mathematical conditions of ensuring the existence of chaotic
oscillations in systems described by ordinary or partial differential equa-
tions. Moreover, it is very difficult to verify that a numerically computed
apparently chaotic solution is indeed chaotic in some sense. Until these
basic questions are resolved, there remains a gap between the mathematical
theory of chaotic oscillations and turbulence phenomena as observed in the

physical world.
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Nonperiodic oscillations of Langmuir waves

P.K.C.Wang

School of Engineering and Applied Science, University of California. Los Angeles, California 90024
(Received 21 December 1978; accepted for publication 15 October 1979)

It is shown that the single-mode equations derived from Zakharov's model for Langmuir
turbulence in a plasma in the presence of an external spatially homogeneous electric field
oscillating at the electron plasma frequency has nonperiodic chaotic solutions whose power
spectra have turbulence-like features. Bounds for these chaotic solutions are derived. Typical
numerical results are presented for the one-dimensional case.

1. INTRODUCTION

It has been observed that certain nonlinear ordinary
differential equations have chaotic or turbulence-like sotu-
tions.'™ A simple example is the Lorenz model for therma
convection in a fluid layer.! Recently, Ruelle and Takens
proposed that fluid turbulence can be mathematically char-
acterized by this class of solutions whose trajectories in the
state space are attracted to a nonempty set (*‘strange attrac-
tor’”) which is neither an equilibrium set nor a periodic or-
bit.! On this set, the trajectories exhibit chaotic oscillations.
Moreover, they are sensitive to variations in the initial condi-
tions. Here, we shall demonstrate that the single-mode equa-
tions derived from the Zakharov’s model for Langmuir tur-
bulence in a plasma have nonperiodic chaotic solutions.

We begin with the following dimensioniess form of
Zakharov’s equations describing the nonlinear interaction of
high-frequency electron oscillations with an ion fluid in the
presence of an external spatially homogeneous electric field
oscillating at the electron plasma frequency @ ,:**

v.[,‘a_E + 7°E —- n(E + Eo)] =0, m
at
g’_:_vzn=vl[;m'+so-(n+£')], @

where i = v/ - 1; (-)* denotes complex conjugation, and a.b
the usual scalar product of two real or complex vectors a and
b. E=(E, .....E,) is the complex amplitude of the high-
frequency electric field & given by

&(t, x) = Re[E(r ,x) exp( ~ iw ,¢)]; 3)

and 7 is a real quantity corresponding to the low-frequency
perturbation in the ion density from its constant equilibrium
value n, . The units of time ¢, spatial coordinates x = (x,,
...sXy ), clectric fields E, and E, and ion density perturbation
are respectively, 3/(2aw ), 3/2)a~"* A, , [(64/3)mn,m,
¢2]'?, and (4/3)an, , where a is the electron-ion mass ratio
m,/m, , A, the Debye length, and ¢, is the ion acoustic
speed. Here, E, = (E,, ,....Eoy) is areal constant vector cor-
responding to the normalized amplitude of the external elec-
tric field. It is of interest to determine the behavior of the
solutions of (1) and (2) (with appropriate damping terms) as
a function of the parameter E, , in particular, the existence
of turbulence-like solutions for some E, , and the onset of
such solutions as E, tends to some threshold values.

398 J. Math. Phys. 21(2), February 1980
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2. SIMPLIFIED MODEL

Let the spatial domain 42 be a bounded open subset of
the N-dimensional Euclidean space R®, and L *(£2 ) denote
the Hilbert space of real square-integrable functions defined
on £2 with inner product (uw) = {,, u(x)(x) dQ2. Let {¢, }
be a countable orthonormal basis for L *(12 ). We seek solu-
tions to (1) and (2) in the form:

E(r,x) = ;Ek(t M (x), a@tx)= ZM(‘ ¥iu(x). @)

If the boundary of {2 is sufficiently smooth, then the
Lapiacian with suitable homogeneous boundary conditions
is a negative operator with a countable point spectrum. We
may take @, to be the orthonormalized cigenfunction of 7
corresponding to the eigenvalue 4, = — u; . In this case,
we may substitute (4) into (1) and (2), multiply both sides of
the equations by 6, (x) , and integrate over (2 to give a coun-
tably infinite system of ordinary differential equations for
E, andn,:

dE, .

i—— —urE, =n,E + Zzamkk'nkEk" (5)
dt s

dn,, e in

i’ Hm

= ~pLE(En +E) + mie ECEe-, (6
#mEo ¥ ) ;;Bu i B )
Whére Ek.Ek' = EIE,”E;~} and

Xk’ = J’a B (x),- (x)9,,(x) d2 . O]

B = Lv’ (6, (s (X) [ (X) 22 . ®

By retaining only the terms involving E, and 2., in (5)
and (6), we obtain the following simplified equations for a
single mode m:

d
'_ft':——(/"vzn -irm)Em =nm(E) +amEm)' (9)
d*n dn
=+ 2r, SR,
de? T g THRT
= —uLE(E, +E.) + B |E. |, (10)
where
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a.= [s1man. .= [ vi1sa@an.
17

n (1 1)
Also, we have added the phenomenological damping coeffi-
cients ¥,, and I, . They may represent Landau damping of
the high- and low-frequency waves. In what follows, we shall
analyze the behavior of the solutions of (9) and (10) as E,
varies. For brevity, the subscript m in (9) and (10) will be
omitted in places where ambiguity does not arise. :

A starting point for searching the strange attractor or

chaotic solutions is to study the nature of the equilibrium
points as E, varies. It is known that chaotic solutions could
arise after finite number of Hopf bifurcations,’ therefore we
shall establish the existence of Hopf bifurcation points.

3. EQUILIBRIUM POINTS
Consider the following equations for determining the
equilibrium points of (9) and (10) for any given E,:
(iy — p)E = n(E, +aE), (12)
pin= —p'E,<E + E*) + B |E|*. (13)
Using (13) to eliminate # in (12), we obtain an equation
for E:
(¥ —p)E = [ — EoE + E*) + Bu = |E|*)(E, +aE).
' (14)

Evidently, since E, is a real N-dimensional vector and n
is real, a solution of (14) must be a complex scalar multiple of
E, (ie.,,E = £ E, forsomef = §p + i£;). Thus, the solution
of (14) reduces to finding £. Note that E = 0 is a solution of
(14) for any E,, . Substituting E = £ E, into (14) leads to the
following equations for £, and &;:

— W + YD)
={Bu i +£D -2 MU +fDIE I (15
vén — 1% = {863 +;i)—2;,}a5,nroll’(, |
16

and

n={Bp "% + &) - U Kl an
where ||Ey||* = Eq Ey .

Dividing (15) by (16) gives

Ex+E1=(@@) "W ~ ¥Er), (18)

which implies that a solution must lie on the circle:
2o f) -
+ —] + - = . 19
e+ )+ le- &) =528 o
Now, we substitute (18) into (16) and solve for §, in

4. STABILITY OF EQUILIBRIUM

terms of §:
§r = §t(.“: + By~ 'HEollzé’/)
X [y + Qa+ Bu~HE 6] (20)

Finally, using (20) to eliminate £z in (18) leads to the follow-
ing quadratic equation for §;:

A§; +BE, +C=0, @n
where
A=[(B/7) + K|, 22)
B=2By ™ + YOI’ - 2%y~ K. (23)
C=p'+ 7V - WK’ (24)
5=Qa+ Bu~?. (25)
IfB2—AC>00r
IEs [|* — 42 B8~ *||Ey ||* — Qav/6)*50, (26)
then (21) has real roots given explicitly by
- Sy’ :_ WB+7S)
S T e ["E"“ T e

. —3 2 z_azl_ 21112
+ (et~ sa 610 - (2] @m
For ||E, ||*>0, condition (26) is satisfied if and only if

IEo|P>E% 2226 [ B+ (B> + &) ]  (28)

Thus, we conclude that for OK||E, || < £, , the origin
(E,n,n) = (0 + /0,0,0) is the only equilibrium state of system
(9) and (10), where 7 denotes dn/dt. When ||Ey|| =E, .a
new equilibrium state (E,n,1) = (Re(E) + {Im(E),n,0)

emerges, where R&(E) = £z Ey, Im(E) = £z E, with{; given
by

- Syu? ( 2 _ 04’6+r’5))
feTrepEL v )P

and £,,n are given by (20) and (17) respectively. As ||E, ||
increases from E,_ , the foregoing nonzero equilibrium state
bifurcates into two distinct equilibrium states (§ 3 E,

+i "By ,n*,0)and € g Ey +i§ [ Ey 1~ ,0) where £ *
are given by (27), whose corresponding £ F and n* are de-
termined respectively by (20) and (17). We note that £, and
£, depend on ||E, |*. Also, the coefficient C defined by (24)
vanishes when

IEo[I* = £ 2" + )2 (30)
Consequently, & ;- also vanishes. Thus, in this case, the equi-
librium set consists of the origin and the point {(£ &

+ i )E; ,n*,0] . When ||E, || increases from E,, , we
have again three distinct equilibrium points.

Let E, = Re(E), E, = Im(E), and z denote the 2(N +1)-dimensional real vector (1,4,Ey E,)”, where (-)7 denotes

transposition. We rewrite (9) and (10) in the form:
n

dz
i f(zE)&

—p'n =20 — i By Ep + B (IEx (I + IE,|I*)

— ¥Ex 4+ (u* + an)E, @D
— vE, = (4* + an)E, — nE,
0 J. Math. Phys., Vol. 21, No. 2, February 1960 P.K.C. Wang 399
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Letz, = (n*,0,E%,E}) be an equilibrium point of (31)as given in Sec. 3. and §z(f )2 z(r ) — z, . We consider the following
linearized system of (31) about z.:

dsz. =3, ' (32)
where J 7(z.;Eq) is the Jacobian matrix of f at z, given by
0 1 (o }4 o}
—u? -5 ABER —-pE) 2B(EDT
J,(z,;E(,) - H (BEy —u'Ey) X 7 ) 33)
aE; 0 -l W’ +anl,
—(E; +aER) 0 - @ +anly -vly

where Oy and I, are the N-dimensional zero vector and ¥ X N identity matrix respectively. It can be shown (see Appendix)
that the characteristic polynomial of J ,(z,;E, ) is given by
det{J , (2,;Ey) — A Liwyy |

=[G+AV+ @ +an V) A +2UA + ) +2 [y + A ) + @? + an)? ]V !

X [(@* + anY{(BER ~ p'EoEo + ER) + a BIES I} + (v + A Map? + BIE, E; ] . (34)
For the case where z, = 0, the above expression reduces to
det[J, (OE) A Ly oy 1 = [ + A + 1" [A2 420 + u){(r + 4 ) +4*} =244 B |I?] (35)

Evidently, when E, = 0, the spectrum of J ,(0;0) is given by [ — y + iu? (muitiplicity ¥), — "+ (" — u%)'"?], which
implies the asymptotic stability of the origin for y.I"> 0. For E, %0, the eigenvalues A = — y + ju® [multiplicity (¥ —1)]
remain invariant, while the remaining cigenvalues are roots of the quartic equation:
A 4Ur + DYA° + @ + 12 +4yT + P +2 [T (P +u') + 1A + 2 [(F + ') =2 83K, [*] = 0. (36)
Obviously, J , (0;E, ) has a zero eigenvalue when ||E, u’ = E2 2(u* + v*)/(24%) . This coincides with condition (30) for
which one of the equilibrium points returns to the origin. It can be readily shown by using Routh’s criterion® that the origin
becomes unstable when [|[E, || > £, . In fact, (36) has only one unstable root and it is real and positive. Thus, the origin has a
saddle point structure in a2 two-dimensional manifold. So we conclude that Hopf bifurcation cannot occur at the origin for any
value of {[E,|| .

For the case where |E, || >E, , there exist nonzero equilibrium states z, which depend on |E, || . We observe from (34)
that 4 = — ¥ + i(u? + an®) are stable eigenvalues of J 7 (z.;Eo) with a multiplicity of (¥ —1). The remaining eigenvalues are
given by the roots of the quartic equation:

At +a,2° + 3, (|EoIDA 2 + 0y (1B A + 2o (B, ) = 0. €p)
where . '

a=2Ar+r) a(|El) =9+’ +4y + @ +an??, ,

8, (1B l)) =2{F [ + @* + an] + yu* + (au* + B)E, ES}, (38

G (Ko |l) =2 [7? + @? + an)] + 2{(* + an) [( BE; — u*Ey)(E, + aES)
+aBE;I'] + raw’ + B)E,Er}, .
where E} , E] , and n* (given in Sec. 3) depend on ||E, || . To determine the value of || E, | for which Hopf bifurcation occurs, it

is necessary to determine the existence of purely imaginary roots of (37) for some value of ||E, || . From Routh’s criterion, we
can deduce that if

a3a,(| K [))> a, (| B []) (39)

and

3, (I Eo D (38 (I Eo |l) — a, (I Es D] = @30, (| E ) , (40)

then (38) has a pair of purely imaginary roots given by 4 = + {a,4, [a,0,(|| Eof) — a, (1E D1}/ .

Let Eqy be the value of [|E, | such that both (39) and (40) are satisfied; and 4 , (| Eo||) = A (1Es ) + id, (I Eo|}) be the
roots of (37) such that { ¢ (£, ) = 0. By a lengthy but straightforward compucauon, itcan beshownthatA , , thederivative of
Ax with respect to the parameter ||E, || , is given by
A (B ) = [a3a5(IEo 1) +2 @, (1Es 1)a, (1B ) — @53 (1Es I)a, (| Eo I

- 330, (|| By )} (VEs ) ){23, [a3a, (I Eo 1) + a2 (1| Es [} —4 a0 (1| E [)]} @“n
where g, denotes the derivative of a, with respect to ||E, | For Hopf bifurcation, '® i R(Eo,,) >0. Due to the complicated

dependence of a,,2,, and g, on ||E, || , it is difficult to determine the threshold values of {{Eo || for Hopf bifurcation. We shall
resort to numerical computation at this point.
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FIG. 1. Locus of equilibrium electric field E* = E§ + iE§ with E2 asa
parameter. (E” =¢ “E and E,;” = £ ~ E, are denoted by solid dots and
circles respectively.

We note here that the Hopf bifurcation problem for (9)
and (10) with spatial dimension NV or dim(E) > 1 can be com-
pletely studied by considering only (37) which is the charac-
teristic equation for the case with N = 1. Since for ¥y > 0 and
I'> 0, the additional eigenvalues A = — A4 + i(u? + an?)for
N> 1 are stable, and a, 2, (||, |]) > O for all ||E, ||, the di-
mension of the unstable manifold associated with a nonzero
equilibrium state is at most three.

5. BOUNDS FOR CHAQTIC OSCILLATIONS

The existence of chaotic oscillations depends on the
manner in which the stable and unstable manifolds associat-
ed with the equilibrium points intersect with each other. At
present, there are no readily verifiable analytical sufficient
conditions for the existence of chaotic solutions for finite
dimensional systems of ordinary differential equations.
Here, we assume the existence of chaotic oscillations and
proceed to derive bounds for their amplitudes, thus provid-
ing estimates for the size of the invariant manifold generated
by the chaotic oscillations.

First, we shall make use of a function ¥ of the form:

FIG. 2. Locus of equilibrium ion densitities # * and n - with £ asa
parameter.
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V(E) = |E~E|*2, 42)

10 estimate the magnitude of chaotic oscillations of the elec-
tric field where E = ReE + /ImE is to be determined. By
direct computation:

d ‘ = =

-{- = — r{lEx + (O [y~ (& + an)ImE — ReE]|?
+IE; + (D [y ' @? + am)ReE — ImE + y ' nE, ]|I°
—illly ~' (@* + an)ImE — ReE|? -
+lly ' @ + amReE — ImE + y ' nE, |12} 3)
If we set ReE = — @ ' E, and ImE = 0, then (43) reduces
to

dav

- r{IEx + Qa) ' Eo|* + |E; — p?Eo/Qay)?

Im l
\/ '/l 8 Z:
)
\{‘ / !
'y " !
* e (] L/ : !
a0 | l w |
| 2
v . & A ‘
% it

./j ™ /“ o2
o n.{o > 2 u‘t’” |
0.00e LR o.008 I
Muses l
Ne.aae |

tl ,
8 i 6 a H Q Re < 14

{ K i

FIG. 4. Locus of the cigenvalues of J, (z,* :E,) with E{ as a parameter.
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- Q) (1 +ur )| |7}
= —7[[E~E |- Qa) (1 +u'y K], (44)

where E, = — (22) ' E, + iu’E,/(2ay). We note that
with the foregoing choice of E, # does not appear in (44).
Moreover, for y > 0,dV /dt <0 at any point E exterior to the
set £= {E:|E ~ E, | <Qa)~' (1 + ' ) E, |} . Let
Zs={(E:V(E)=||E +a'E,|*<8?]. Since for any § > 0,
Z; is a ball in E-space centered about the point —a ~'E,,
with radius 125, it is possible to select a8 such that C =, .
In fact, elementary geometric considerations show that the
smallest § having the foregoing inclusion property is given
byd =(v2a)~' (1 +u'y =?)'"}||E;|| . Evidently,
dV /dt <Qatany point E exterior to Z; . This implies that for
a solution of (31) initiated from any point

2(0) = (n(0)./i(0),E, (0),E,(0)) at 7 = 0 with E(0) = E(0)

+ iE,(0) exterior to 5 , its corresponding E(¢ ), ¢ > Oeither
eventually enters 5; at some finite time ¢, > O and remains in
Z; foralls > ¢, ortends to = as t — . Clearly, 5 con-

3
-

o

Pl igLIL EP R 28.3¢ et 38,20

-~ N "\,.~ N A N - -
i v,

u

4
—

IR SRR
wi
«

FIG. 6. 'E(1)| and (1) vs time ¢ corresponding to the solution of (53) and
(S4)withm = 1. L = 7/V10.", =20y, = 1.0, E; = 1.625; initial data:
E(0) = 1.426 + 0.5071/, n(0) = — 40.75 and #(0) = 34.58.
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FIG. 7. Projection of the trajectory of (53) and (54) (with parameters as
given in Fig. 6) onto the (£, £, )-plane.

tains all the points E(t ) along any chaotic solution of (31)
when it exists.

Next, we derive a bound for the magnitude of ion densi-
ty oscillations. Let /i = n + u?8 ~'||E, ||*>. We can rewrite
the first two equations in (31) as

v

T=-ﬂ,vr+ [ovﬁ |E—/‘zﬁ -IEO 2]1.' (45)

where 4" = (4,77 and

' 0 1 ]
= . 46
nd [ —ut =ar (46)
Given . #{(0), the initial data for .#" at r = 0, (45) is equiv-
alent to the integral equation:

H(t) = [expa't |.¥(0) + J'exp[d(t -7}
0

X [0,8 |E() —4*B 'K, |*)dr. @7
Thus,
brOl<lesp e (1O + [ 18 llexpat =
X |E(r) — B ' B, |2 dr. (48)

For u?» I' >0, we can find a constant % > 0 such that
llexp (&t) {|<€ exp( — I't). Also, we have already estab-
lished that along any chaotic solution E(t )C.Z; or | E(r)
+a'Ey [ =(V2a) " (1 +pu'y ) "}|E, || for all &.
Hence,
|E(r) =48 ~'Ey |

=|En+a'E ~ (@~ +p’f K]

|[EM+a~'E |+ la™" +4?8 ' ||| K|

b+ lat +u2 8 |E <K, |, (49)
thl'ﬁ W= (\/za)—l (l +p4r—l)l/2 + |a—l +,ulB -1 i
It follows from (48) that
I @OiI<E{¥ | BB IPT ~ + [[|z(O))

— ¥ | BB |’T =" Jexp( ~ I't)}

P.K.C. Wang 402




]

7

-20.00

TON DENSITY

)
‘0. 00 5.00 i5.0C 15,58 <2.30 25.00 30.00 35.00

IM(E)
0.00

i

-5.00

-10.00

-15.00  -10.00 - 0.00 5.00 10.00

5.00
RE (£}

FIG. 8. Solution of (53) and (54) with £, = 2.669,
E(0) = — 3.07656 + 4.22328/,n(0) = — 8.38056, #i(0) = — 8.25344,and
other parameters as given in Fig. 6.

<¢max{||z0).¥ | B |I|E > '}, (50)

for all 1 >0 and E(0)eS;. When [jz(0)|< ¥| B | |Eo 27",
we have A/ ()|IKE ¥| B | ||E ||I*I" - for all £ >0, a bound
which is independent of z(0).

6. ONE-DIMENSIONAL EXAMPLE

Consider the case where NV = | with a bounded spatial
domain 42 = [0,L ]. Assuming that both E and » vanish at the
boundary points x = 0 and x = L, we can take , (x)

= (2/L)"*sin(kwx/L ), u, = kw/L, k = 1,2---. For this
case, the coefficients a,, and £,, defined in (11) become

L
a, = J‘ (2/L ) *sin*(max/L) dx
(]

for m even,

B fL 2)3/”:[" /L )]si /L)d
= A (Z E_— sin“(mmx/L ) |sin(mmx x

_ [ 0 for m even,
Tl =8mm2/L%"%/3  for m odd.

Thus, for an odd integer m, Egs. (9) and (10) have the
form:

(52)

i=2 - (2I)E, +ir,E,

L 27 172
==n, [Eo + (Z) /(3m1r)£,,,] , (53)
dzn' dn mmr\?
e op, e (22,
dt? dr L

2
’

(54)

$y1/2
_ (-’%)ZEO(E,, +EL)— [Smfr—-——-(Z/ L3 ) ] IE.,

12.00

8.00

| El

‘.
i

.00

0.

J e
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TIME
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FIG. 9. Solution of (53) and (54) with E} = 5.08, .

0
= { 7,7 \I22 , (51)  E(0)y= — 50069 + 3.26742i.n(0) = — 8.63114,(0) = 1.86353, and oth-
\W2/7L)7*/(3mm) for m odd, er parameters as given in Fig. 6.
403 J. Math. Phys., Vol. 21, No. 2, February 1980 P.K.C. Wang 403
B T ann ol ety —r ---




-

¢

s ——

R 2 PRI el o -

-30.00
=
<
=
T
D

ION DENSITY
§0.00 -

O-BD.DU

-20 5.00 10.30 15.30X € 26.C0 25.00 30.30 35.00
TIm

15.00

A

10.00

IM(E)

-10.00  ~5.00 0.00 5.00 10.00
RE (E)

-15.00

FIG. 10. Solution of (53) and (54) with £} = 10.0, £(0) = — 6.0 + 2.0,
«0) = — 10, #(0) = 0, and other parameters as given in Fig. 6.

where E, is a real nonnegative parameter.

To illustrate the qualitative features of the solutions of
the above equations, numerical results are obtained for the
case wherem = |, L = 7/v/10,I", = 2.0, and 7, = 1.0.
These values are chosen to simplify the numerical comoputa-
tion. They may not correspond to any particular physical
situation. Numerical results for specific physical situations
will be presented eisewhere.

First, we compute the locus of the equilibrium electric
field £ as a function of £ 3 using (27) and (20). Figure 1
shows the locus in the (E, ,E,)-plane. It can be seen that
bifurcation occurs at £ = E2, = 0.09974. At E} = E,
= 5.05, one of the equilibrium points E * returns to the ori-
gin. ASE2 —» «, the locus of one of the equilibrium points is
asymptotic to the line E; =y 8 ~' (2a, +B,u,"' )Ex
= —~0.1 E,, while the other one tends to (£, ,E;)

404 J. Math. Phys., Vol. 21, No. 2, February 1960

=( — 2,0). Figure 2 shows the equilibrium ion densities n*
as a function of E 2.

Next, we examine the nature of each equilibrium state
z, for various values of £} by determining the roots of (37)
or the eigenvalues of J , (2, £, ). Figure 3 shows the locus of
the eigenvalue. of J (0;E,) as £ varies. As established in
Sec. 4, when £} < E%, = 5.05, all the eigenvalues have nega-
tive real parts implying that the origin is asymptotically sta-
ble. When E} exceeds £ 2, one of the real cigenvalues
crosses the imaginary axis. Consequently, the origin be-
comes unstable. Figure 4 shows the eigenvalue locus of J .
(z,” ;E,) for 0.1 <E % <40.0, where the components of z,”

=(n",04 & Eo.§ [ Eo) are given by (17), (20), and (27).
We note that for 0.1 <E 2 <0.108, all the eignevalues have
negative real parts, and at E 2 =0.108, a complex conjugate
pair of eigenvalues cross the imaginary axis into the right-
half plane. It can be verified that Hopf bifurcation takes
place at this point. The locus of the eigenvalues of J (z,”;
E,)is shown in Fig. 5. Here, for 0.1< E 1 <2.669, J (2, ;E,)
has a positive real cigenvalue. When E ; >2.67, all the eigen-
values of J ;(z,”;E, ) are in the left-half plane.

An inspection of the eigenvalue loci given by Figs. 3-5
suggests that one might search for the existence of chaotic
solutions in the neighborhood of z,* for E'2 > 0.108 (Hopf
bifurcation point). Numerical integration of (53) and (54)
with various initial conditions was performed for progres-
sively larger values of £ 2. The results suggest that the peri-
odic solutions in the neighborhood of z,* (whose existence is
ensured by the Hopf bifurcation theorem) are unstable and
the bifurcation is subcritical. Figure 6 shows the time-do-
main buildup of a nearly periodic solution which evolves into
chaotic oscillations. The projection of the trajectory onto the
(Ex .E;)-plane is shown in Fig. 7. Figures 8—10 show the
chaotic solutions for various values of E 3. It was found that

/
, /

min /
6
7/
/

4
2

Eoe
O L

[] 1 2 S
1Eq|
FIG. 11. Variation of r,,,, as a function of |E,, |.
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these solutions are highly sensitive to initial conditions.
Also, not all trajectories in the z space tend to the chaotic
solutions as ¢ — . This is apparent from the fact that for
0.108<E2 < E2 = 5.05, the origin z = 0 is a stable equilib-
rium point, and forany EZ > E 2.,z is aiways a stable equi-
librium point. We note from Figures 8b-10b that in each
case, there exists a circle with minimum radius ., which
encloses the projection of the trajectories onto the (Ep ,E,)-
plane. Figure 11 shows the variation of r,,, as a function

| Eo | as obtained from the numerical solutions. Evidently,
7wun Can be bounded by a linear fundtion of |E, |. This is
consistent with the estimate § given in Sec. 5. It can be read-
ily verified that in each case, the projection of the trajectories
of the chaotic oscillations onto the (E, .E, )-plane is com-
pletely contained in 5; = {E:|E+a ' E, |

V25 = 8.3445 | E, |}, where @ = 1.204367. Also, we ob-
serve from these solutions that the maximum depth of the
jon density troughs increases with E}, and the electric field
oscillates more rapidly during the ion density dips. This can
be roughly explained by considering the following equations
for E, and E; derived from (31):

d’E, an dE,
-+ (27' - 'T——) e
dt @ +an)/ dt
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e e——— vr

o e ot .

: 2 2 _ ayn
+(r+(# +an) (;t:-i-an))E‘l
= -—’l(‘l2+an)Eo. (55)
dZE’ a’l dEl
dr? + (27_ (y’-f-an))T .
] 2 2 _ ayn
+ (f+(/t + an) . (,ul+an))
= —(n - g __ . 56
(n+(y T ram n |E, (56)

Considering n as a slowly time-varying parameter, the fre-
quency of electric-field oscillations is roughly equal to

o = [P+ an)? — ayiu® + an) ~' ', and the effec-
tive damping coefficient is 2y — an(u® + an) ~'. Let T de-
note the time interval corresponding to an ion density dip,
and ¢ * is the minimum point of 7 over T where (s *) = 0.
Then w(r *)> w(t) for all ¢ in T such that n(z ) and

42 + an(t ) have the same sign. This condition is satisfied for
the solutions shown here.

Figure 12 shows the power spectra of the electric field
computed by means of the fast Fourier transform method.
The results resemble those corresponding to turbulence.
Also, the spectral bandwidth increases with £} as expected
from physical considerations. Finally, the truncated discrete
version of the autocovariance function of E given by

1 N—j+t N -
N—-j+D) .-gl [E_('A)—E]
x{E[G+j~-14 ] -E}* (57

is computed, where £ denotes the mean-value of E, and 4 is
the time-step size. Figures 13a-13c show the real and imagi-
nary parts of p(j4 ) for E} = 1.669, 5.05 and 10.0. It can be
seen that both Re p(j4 ) and Im p(j4 ) decay from their

p(jad)=

maximum values and then fluctuate about zero. But wecan- -

not deduce that the autocovariance function actually tends
to zero as the time delay r — oo as in the case of solutions on
a strange attractor.

7. CONCLUDING REMARKS

It was found that the single-mode equations derived .
from the Zakharov’s model for Langmuir turbulence in a
plasma with phenomenological damping exhibit chaotic so-
lutions whose power spectra have turbuience-like features.
In the case of multiple modes, if all the mode coupling terms
are omitted, then we obtain sets of uncoupled equations of
the form (9) and (10). Each set is capable of producing chaot-
ic solutions when E 2 exceeds a certain threshold value (gen-
erally different for each mode). The total power spectrum of
the electric field is simply the sum of the single-mode power
spectra. This seems to imply that energy transfer between
various modes is not necessary in producing turbulence
which is contrary to the cascade theory of turbulence. There
are a number of computer studies’ of Langmuir turbulence
induced by interacting collapsing solitary waves based on
Zakharov's model with phenomenological damping. Per-
haps these computer results actually correspond to some
form of chaotic solutions which are inherent in the model.
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In this work, we have sought solutions in terms of the
cigenfunctions of the Laplacian operator over a bounded
spatial domain. Of course, we may expand the solutions in
terms of any suitable countable basis for L (42 ) and arrive at
a countably infinite system of ordinary differential equations
similar to that given in (5) and (6). One may also consider
directly the Hopf bifurcation problem for Zakharov's model
(1) and (2) without resorting to modal expansions. Some
results in this direction have been obtained recently. They
will be reported eisewhere.

Finally, we note that the presence of the phenomeno-
logical damping coefficients ,, and I',, in the simplified
equations for each mode m is essential for the existence of
chaotic solutions. But there does not exist a clearcut way of
introducing the damping terms into the Zakharov’s model
based on physical considerations. Also, a detailed study of
the structure of the stable and unstable manifolds associated
with the equilibrium states is necessary for revealing the na-
ture of the chaotic oscillations described here. Unfortunate-
ly, this task is complicated by the system’s dimensionality.
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Sincedet P = [(y +4)* + * +an)*]¥>0, P~ ex-
ists and is given by

P =[+4AY+@ +any]™

—@+ANy =@ +anly,
2 (A3)
@+anly =@+l
Now, det Q can be computed by considering the matrix
ooy, %]
Q 0, P!
-4 _ 1 2[(BER —wE)T BEDTIAT!
akE} :
= l L,
— (B, +aF}) |
(A4)

Sincedet S = (det Q)(det P~!),detP~' = [(y +1)?
+ @?+an9*}~"and

_— 2 — R — 2 T !
detS = —u’ =2 [(BEy —4’E;)" ]A [ (Eo +aE‘,.)]
(A5)

. we have det Q = det S/det P ' . The expression (34) is ob-

tained directly from (Al) and (AS).

?].B. McLaughlin and P.C. Martin, Phys. Rev. A 12, 186 (1979).
30.E. Rossler, in Synergetics, A Workshop, edited by H. Haken (Springer-

‘Y. Kuramoto and T. Yamada, Prog. Theor. Phys. 55, 679 (1976).
D. Ruelle and F. Takens, Commun. Math. Phys. 20, 167 (1971).
V.E. Zakharov, Zh. Eksp. Teor. Fiz. 62, 1745 (1972) [Sov. Phys. JETP 35,

'N.R. Pereira, R.N. Sudan, and J. Denavit, Phys. Fluids 20, 271 (1977).
5T.A. Davydova and K.P. Shamrai, Fiz. Plazmy 3, 591 (1977) (Sov. I.

E.J. Routh, Advanced Dynamics of a System of Rigid Bodm (Dover, New

193.E. Marsden and M. McCracken, The Hopf Bifurcation and its Applica-

P.K.C. Wang 407

APPENDIX
From (33), it is evident that
det[J  (z5E) — A Ly o1y ] =4 (2 + A )detP — detQ, 'E.N. Lorenz, J. Atmos. Sci. 20, 130 (1972).
(Al)
where ) Veriag, New York, 1977), p. 184.
-+ @ +anly ]
2 _ ’
- +an')zl~ r+ Iy . . 908 (1972)).
—p | 2BEy —p’Ey)” 2B(ED)
privanat
0= aE; i Plasma Phys. 3, 333 (1978)).
| P
York, 1955).
— (B, +aE}) | ' orke 1959
I (A2) tions (Springer-Verlag, New York, 1976).
w? J. Math. Phys., Vol. 21, No. 2, February 1980
iV ot e s < - bt

e e ——————— -~




APPENDIX B




FURTHER STUDY OF CHAOTIC OSCILLATIONS OF SIMPLIFIED

ZAKHAROV'S MODEL FOR LANGMUIR TURBULENCE

P.K.C.Wang

School of Engineering and Applied Science
University of California

Los Angeles, California 90024

This work was supported by the
U.S. Air Force Office of Scientific Research

Under Grant No. AFOSR 79-0050

&5 e

L A A e T T T T




ABSTRACT

Further studies are made on the chaotic oscillations of the single
mode equation derived from Zakharov's model for Langmuir turbulence in a
plasma in the presence of an external spatially homogeneous electric
field oscillating at the elictron plasma frequency. First, the bifur-
cation of equilibrium states with respect to both the energy of the exter-
nal electric field and the damping coefficient of the high-frequency
waves is investigated. Then, studies are made on the onset and quench-
ing of chaotic oscillations when damping is varied. The nature of the
chaotic oscillations is explored by determining various Poincaré maps

numerically.
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I. INTRODUCTION

Recently, it was shown1 that the single mode equation derived from
Zakharov's model2 for Langmuir turbulence in a plasma in the presence of
an external spatially homogeneous electric field oscillating at the
electron plasma frequency and with phenomenological damping has nonperiodic
chaotic solutions. The power spectra corresponding to these solutions
have turbulence-like features. In reference 1, the chaotic solutions
were discovered through bifurcation analysis and numerical experimentation.
The structure and the onset of these solutions were not explored in detail.
Here, further studies are made on the nature of the chaotic oscillations.
First, the bifurcation of equilibrium states with respect to both the
energy of the external electric field and the damping coefficient of the
high-frequency waves is studied. Then, the quenching of chaotic oscil~-
lations due to increased damping is explored. Finally, some properties
of the chaotic oscillations are studied by determining various Poincaré

mappings numerically.

II. SIMPLIFIED MODEL
As developed in reference 1, the simplified equations for a single

mode m in the Zakharov's model have the form:

dE
. m
i - Qg - AY)E =n (E +aE), 6%
dznm dnm 2 2 * 2
de? T2 g tHhy T HEe Byt EQ* BmIEm!’ @)
with
- 3 - 20,2
o -‘I{; ¢, (x) 4, em ‘[QV (o, (x) ] (x) dQ, (3)

where a.b denotes the usual scalar product of two vectors a and b in the

SNSRI M
e o 1+ e g e o =




real n-dimensional Euclidean space ]RN; ¢m is the orthonormalized eigen-
function of the Laplacian operator corresponding to the eigenvalue -u; < 03
Ya and I‘m are the phenomenological damping coefficients; Em and o are
respectively the coefficients of expansions for the electric field E and

ion density n:

Bt = D B M,  acm = ) (04 x) )
k k
defined on the spatial domain  C ]RN. . Eo = (Eol""’EoN) is a real

constant vector representing the normalized amplitude of the external
electric field. In what follows, we shall omit the subscript m in (1)
and (2) for brevity.

Let ER = Re(E), EI = Im(E), and z denote the 2(N+l)-dimensional real

vector (n,ﬁ,ER,EI)T, where (-)T denotes transposition. Equations (1)

and (2) can be rewritten as:

- . .
dz | ¢, o |-wn - 2rh - e B+ BCIEIE + (2P
d-t: = (Z’Y9E°) = 2 ’ (5)
-YER + (u° + cm)l':'.I
- - : 2 -
| ~YE; (u + om)E‘.R nE | |
where ||+ || denotes the Euclidean norm.
III. BIFURCATION OF EQUILIBRIUM STATES
The equation for the equilibrium states is given by
£(2;Y,E,) = 0, (6)
2(N+1)
where y and Eo are parameters. Evidently, z=0 € R is an equili-
brium state for all y,Eo. From the implicit function theorem, a nece-

gsary conditions for bifurcation from the main branch C= {(0,y,E°):yER s

EOE RN} is that the Jacobian matrix Jf(O;y,EO) given by

- e - —— -y -2

o e e e —_—




0 1 or or
2 2NT N
J.03v,E) = | T RUE] Oy )
£ ° 0 0 -yI u?1
N N
—Eo 0 —uIN —YIN
is singular, where ON and IN are the N-dimensional zero vector and NXN
identity matrix respectively.
Since
N-1
det J(0;v,E)) = (v? + u) {3+ ) - 2uflEIPY, (8)
bifurcation from € can occur only when det Jf(O;Y,E°)=O or
2_ 2 A 2w 2
lEIF= E2. = (r+ u*)/(u?). (9)

It can be deduced from the following exact expressions for the non-

zero equilibrium states z, = (ne,O,E:,E;) with
e _ .t e _ .+
Ep = &R E; = EIEo’ (10)
5= g 2+ ey Y E RED v + (20 + Bumd)||E_|REFI? (11)
R 1 o I o I ’
+ - Syn? 2 (U8 + v28)
&1 HEOH £
(BZ + 62Y2)||Eo||2 61-12
1
- =2 2 _ (207Y ?}
e - a8 e [P - (232) 13, (12)
+ -2+
o = (BuTED? + D2 - 28 Y|P, (13)
1
IEIP > E2_ & 2067°[8 + (B2+8%y%)7] (14)
§ = (20 + By 0), (15)

that bifurcation from £ indeed takes place at any point (O,Y,EO)EC such
that HE°||= E;c. The critical external field energy Ezc increases with
the damping coefficient Y.

For any fixed y and 0 g HE°|F < Egc, the origin z = 0 is the only

equilibrium state. When||E0|F = E;c, a nonzero equilibrium state z_




emerges, and as ”EOIF increases from Egc, z, bifurcates into two distinct

equilibrium states z: and z;. Moreover, the bifurcated branch correspond-

ing to z: crosses over the main branch C at Egc' Figure 1 shows the bi-

furcation diagram for E;, the imaginary part of the equilibrium electric

field, with ||E_|* as a variable parameter for the one dimensional case (N=1)
1

with a bounded spatial domain 2 = [0,L] with ¢1(x) = (2/L)E§in (mx/L) and

parameters:

Hy o= /L, xL = 1//10, Y, =1 . (16)
a, = 27/1)%/ (3, 8, = -8m(2/L5)*/3.

2

Evidently, the new branch appears abruptly whenl[EOIF = E_, and immediately

bifurcates into two distinct branches as ||E_|[* increases from Egc.
Now, we consider the case where “EOIF is fixed and the damping coef-

ficient y is a variable parameter. It can be readily verified that the

trivial solution z = 0 is the only equilibrium point when y= 0. From (12),

it is evident that for real Ef, Y must satisfy:

4 HEO‘F 2 2 2 T
o = I, | 2an®+ B)2- 4aBu*}® . 17)
2ay?

Y€Y

For 0 < y < Yor there exist two distinct nonzero equilibrium states

and they emerge into one when y = Yc' When y increases beyond Yoo the non-
1

zero equilibrium state abruptly disappears. When y = ?; 4 u{ﬂIEOIF - u?}2?,

there is only one nonzero equilibrium state. Figures 2 and 3 show the

e
I

sional case with parameters given in (16) and fixed values of ||E |F.  We

loci of equilibrium E_ and n® as Y increases from zero for the one dimen-
observe from Fig.3 that as y»0, n® tends to nonzero values which do not cor-
respond to equilibrium ion densities. Figure 4 shows the loci of equili-

brium electric field as Yy varies while keeping]lEOIF constant.
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IV. QUENCHING OF CHAOTIC OSCILLATIONS
In the Zakharov's model for Langmuir turbulence, there does not exist
a clearcut way of introducing damping terms into the equations based on
physical considerations. Here, phenomenenological damping coefficient Yp
and Fm are introduced into the simplified model (1)-(3). They may corre-
spond to Landau damping of the high and low frequency waves given by3
1

= .:_3. mi ll: z -3 !‘. -
v = 3 (GD)(F) Gl emel- 3™ - 30,

rofjw

(18)
3 /w %
I‘m T4 (5) um>‘D’

where XD is the Debye length and mi/me is the ion-electron mass ratio. We
observe that the damping coefficient Yo varies rapidly for small umlD > 0.
Therefore, it is of interest to determine any change of the behavior of
the solutions as Yo is varied, in particular, the onset or quenching of
chaotic oscillations when Yo tends to some threshold value. This is studied
numerically for the one~dimensional case with the fixed parameters as given
in (16).

First, we study the case with Eg = 2.669. It is known that chaotic
oscillations exist for T = 2.0 and y= 1.0 (see Ref.l). At these para-
meter values, the equilibrium states consist - of the origin z = 0 and two
distinct nonzero equilibrium states z: and z; given by (10)-(15). <Chaotic
oscillations were found in some neighborhoood of z:. Figures 5-7 show
the loci of eigenvalues of Jf(ze,y,Eo) with E; = 2.669 and variable para-
meter y for each of the equilibrium states z,- We observe that aty= 1.0,
there exist a pair of unstable complex eigenvalues for Jf(z:,y,Eo) with
E; = 2.669. As Y is increased, these eigenvalues cross the imaginary axis
at y=4.35, When y is increased beyond 4.35, all the eigenvalues of

Jf(z:,Y,Eo), E: = 2.669, remain in the left-half complex plane. By defin-
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ing a parameter Y = l/?, we see that Hopf bifurcation with respect to
parameter ? takes place at § =~ 1/4.35. When y= Yc = 5.3358, one of the
real eigenvaues is zero. At this point, z: and z; coalesce into one equi-
librium state as shown in Figs. 2 and 3. Thus, we expect that quenching
of the chaotic oscillations will occur when Y=®4.35 for Eg = 2.669. Nu-
merical integration of the system equations confirms our expectation.
Figures 8a and 8b show the existence of a periodic solution at y= 4.35 as
predicted by the Hopf bifurcation theorem. As the damping Y is reduced,
the amplitude of the periodic oscillations increases as shown in Figs. 9a
and 9b with y= 4.30. At y= 3.0, a more complex form of periodic solutions
appears (Figs.10a and 10b). As v is further reduced, the oscillations
become more complex in structure and appear to be almost periodic for

2.0 >y > 1.6 (see Figs.11-13). Finally, for y<1l.55, the solutions be-
come chaotic (see Figs. l4a and 14b). Figures 15-17 show the chaotic oscil-
lations for vy= 1.5,1.4 and 1l.1. The power spectra of the electric field
corresponding to the solutioms in Figures 14~17 are shown in Fig.18. It
can be seen that the spectra evolve from essentially discrete spectra to
broadband spectra as Yy crosses the threshold value YT:: 1.55. Although
the solutions shown in Figs.10-17 start with the same initial conditionms,

similar behavior has been observed for solutions starting near the equili-

+
- brium state ze.

V.  POINCARE MAPS

To obtain some idea on the nature of the chaotic oscillations, we con-
sider various Poincaré maps associated with (4) with parameters given in
(16). Let H denote a given three dimensional hyperplane in the state
space ]R4 of system (4) whose flow is dencted by the family of mappings

Ft : IRA o ]Ra, t€ER. We define a Poincaré or first return map P from
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S € H into S such that
P(z) = FT(Z)(z)GES for all z € §, (19)
and S is transverse to the flow (i.e. (aFt(Z)/at)'r(z) has a nonzero com-

ponent with respect to n, the normal vector for H), where T(z) is the small-

est time t >0 such that

FT(Z)(Z)GS and sgn[(z-n)(FT(z)(Z)-n)l > Q. (20)

Let z(Q) be a point in 8§ at t = 0, we are interested in the sequence

of states zk+l generated by

22 p),  x=0,1,2,...,
0 (21)
z = z(0) € S.
. 0 . X 0 0
If there exist a point z  and an integer K 2> 0 such that z = z , then z
K
corresponds to a periodic solution with period T = é;% T(zk). For non-

periodic or chaotic oscillations, there do not exist such points.

First, we obtained numerically the points generated by Poincaré maps
corresponding to various hyperplanes in the state space of system (4) with
parameters given in (16) and I' = 2.0 for various values of Eg. Figures
19-22 show the pcints generated by Poincaré maps for progressively higher
values of E; and fixed damping coefficients Y= 1.0 and I'= 2.0 along chaotic
solutions. A notable feature of these results is that the points appear
to lie along certain curves in Ila, which implies that the Poincaré maps
associated with chaotic solutions are one dimensional in nature. But the
graphs of the Poincaré maps in terms of some curve parameter are not readily

obtainable.

VI. CONCLUDING REMARKS

The results of this study show more clearly the onset or quenching of
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chaotic oscillations for fixed E; and variable damping coefficient y as
compared to the case with fixed Yy and variable E: studied earlier} As
Y is decreased from the Hopf bifurcation point ?, the oscillatory solutions
evolve from simple periodic to almost periodic solutions and to chaotic
solutions. It is conjectured that the chaotic solutions appear after
further bifurcation from the periodic solutions as Yy decreases from Q. The
verification of this conjecture requires further study.

In this study, only the single mode model is considered. The ex-
istence of chaotic oscillations in a multiple-mode model is being investi-

gated. The results will be reported in the near future.
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ABSTRACT

A numerical study is made on the chaotic solution of the
nonlinear interaction of three positive-energy electrostatic waves
in a plasma, where one wave is growing linearly and the remaining
two are linearly damped. The reduction from the six-dimensional
system to a three-dimensional system and bounds for the chaotic

attractor are also discussed.

d“%




- —r W T o

I. INTRODUCTION

In the conventional theory!’? of turbulence in plasmas, turbulence
is described as the state in which a large number of collective degrees of
freedom are strongly excited. The energy of the unstable modes is distrib-
uted to other modes by a nonlinear process and then dissipated through some
form of damping mechanism. When the energy transfer hetween the modes is
balanced, a stationary broad spectrum corresponding to stationarv turbulence
appears. If many collective degrees of freedom are excited simultaneouslv
from the level of thermal fluctuation, the random character of the fluctua-
tion is preserved to some extent. If only a small number of degrees of
freedom are excited in the initial stage, there must be a randomi:zation pro-
cess by which the system goes into the turbulent state.

Recently, it has been proposed®”® that the turbulent state or chaotic
behavior can arise in deterministic nonlinear models which have a small
umber of degrees of freedom. Particular examples of such models have been
found in plasma physics®~®. In this paper, we consider a simplified model
governing the nonlinear resonant interaction of three waves with both linear

growth and damping rates:

dA,/dt = v,A, - iVA,A,
. * .
dA/dt = - YA, - iVAAT Y (1.1

dA,/dt = - Y,A, - iVAA,Y

where Aj's are normalized complex amplitudes of waves, V 1is real and
yj’s are positive numbers. System (1.1), without the growth or damping

terms, has been thoroughly investigated. We shall show that, under certain
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conditions on Yj , the linear instability of the first wave could lead to
a turbulence-like state without any additional assumption for randomization.
A particular example in the form of system (1.1) will be studied in detail

numerically.
IT. DERIVATION OF BASIC EQUATICONS
We first consider three nonlinearly interacting oscillators whose

equations of motion are given by

51 - Z.Ylé-l + wlzal = Vajyad;

d; + 2Y,a, + wp’a, = vaja, L , (2.1)

d; + 2vs;a; + wslas = va,a,

where v, Yj's and wj's are real positive numbers. We assume that the
linear damping on growth rates is small (i.e., Yj <<u5) and the nonlinear
coupling is small (i.e., Ja;}v<<w2®,w32) . Then we can express a, in

the form
aj(t) = {Aj(t)exp(iwjt) + Aj*(t)eacp(-imjt)}(V/wj)l/2 , (2.2)

where Aj is a slowly time-varying component. If the frequencies satisfy
the resonance condition w;,; = w; + ws; , then substituting (2.2) into (2.1)
leads to equations of the form (1.1), with V = (v:‘/fi(umzma)l/2 .

We can also derive equations in the form of (1.1) for the nonlinear

wave-wave interaction in a one-dimensional plasma involving two plasma waves

B e




(denoted by subscripts 1 and 3) and an ion-acoustic wave (denoted bv
subscript 2). We assume that thc resonance conditions for hoth the wave
numbers (i.e., k; =k, +k,) and the frequencies are satisfied. Here, the
pair (wj,kj) satisfies the linear dispersion relation associated with the
j-th wave. We assume that the first plasma wave is excited bv some external
force and has a linear growth rate v, . The second plasma wave and the
ion-acoustic wave are excited hy the first plasma wave thrcugh nonlinear
coupling and have linear damping rates vy, and Yy, , respectively. We
also assume that yj<<(»j and that the nonlinear coupling of wa.es produces
small shifts in frequency from the linear values. Moreover, the resonant
interaction between waves and particles is negligible. Then, the equations
for the interacting waves are described by (1.1). The amplitudes A. and

]
the parameter V are defined as follows®:

X 21 3Re e(l) k) v .
AJ (t) = { i [ W ’k lb) (t) ’ J=11‘-’3’ (-3)
ki k;? (1) 11" 5
V= - o e ke k) _8;_ {_3__% £ £k_)(k ik (2.4)
j

tlere, the parameter V 1is real, ¢j is the slowly varying component of
*~e rlectrostatic potentional of the j-th wave, and 5(1) and c(z)
‘»» first and second order dielectric constants obtained from the
Jtasay-Poisson equations.
rirr *n nhtain explicit expressions for the variables and para-

.ier the following simple model: weak electron beams are

«*- :iles of an infinite plasma slab with thickness 1L .




We assume that there exist two eigen-modes of the plasma waves and one
eigen-mode of the ion-acoustic wave, and that the velocity of the beam in
the positive (resp., negative) direction is between the phase velocities
of the two plasma waves propagating in the positive (resp., negative) direc-
tion. We also assume that the interaction between the beam and the fast
plasma wave can be neglected. Then, it is sufficient to consider the system
consisting of the beam in the positive direction, the plasma wave 'l' and
the ion-acoustic wave '2' traveling in the positive direction and the
plasma wave '3' traveling in the negative direction.

We further assume that: (i) the electrons and ions in the plasma and
the electrons in the beam have time-independent Maxwell velocity distribu-

tions in the zero-th order, (ii) the Landau damping of wave '2' is negli-

gible as compared to the damping due to Coulomb collisions, but the Landau
growth rate of wave 'l' due to the beam is iarger than the collision damp-
ing rate, and (iii) the plasma is nonisothermal so that the Landau damning
of the ion-acoustic wave is negligible. Then, the amplitudes Aj , the

parameter V and the damping on growth rates Yj are expressed explicitly

as follows:
( Y/
k2 2% k2 2w 2 | % ~
Ac g —] 0,513, At i ] e 2.5)
J m Ulpe J m 2 cs
0 2 m A
v=Ll Pe_ < _k Ikeks] | (2.6)
2 b
B vTC Me mpecs |4k, | ™ ny
fv,-w_/k ] w./k ] v,-w_/k, ¢
- . d Tpe’ T1||Tpb’ ! d e’ 1
Yy Yoor * /‘r?wpe v J Vo J exps - V7 y (2.7)
b b b
&
- h....r-.u—-‘:ﬁﬂ'-r‘r‘w" Tero wETS e T - - - r— R .;




——

i

Y2
Tr al
v, = | ] K,Cos Yy = Yoo - (2.8)

1

Here, v, ; is the collisional damping rate, LR (resp., mi) is the

P

is the electron (resp., ion, beam) plasma frequency, vy {resp., vy ) is
e

the electron thermal velocity of plasma (resp., beam) , < is the sound

electron (resp., ion) mass, e 1is the electron charge, w e (resp., wpi’whi)

velocity of nlasma and vy is the beam velocity.

It can be shown that, if A, = A, = 0 at the initial time, then
[Ay(t)|+= as t+= . Hence, the solution of (1.1) is not uniformly bounded
with respect to the set of initial conditions whose closure includes the
set such that A, = A, = 0 . Thus. the assumptions made in the derivation
of (1.1) may be violated in some cases. Such a situation will be discussed

in Section 4.

IIT. ANALYSIS OF THE SIMPLIFIED MODEL

We eliminate the parameter V from (1.1) by setting Xj==-VAj(j=1,2,3):

3
X; = v1X; + 1XpX,
X, = - v,X, + iX,X," } . (3.1)
. . *
X3 = - viX; + iX,X,

The time derivative of ¢£ = %{ZXIXI* + XX, "+ X3X3*} is given by

£ = ZYXXIXI* - YaXaXp" - stsxa* . Hence,

é(t) < E(O)exp[z max{Yl 1 Y2 ’YEHt” y te (—m,eo) . (3.2)




R - DU

Therefore, the integral curve of (3.2) exists for all te (-o,=) .

. 9. . . ..
Setting Xj = rje J(3=1,2,3) , with positive rj , (3.1) becomes

f, + 6,1, = y,1, + ir2r3e-1(el'92-e3)
T, + 18,7, = - y,r, + ir,rael(el.ez-e’)L . (3.3)

Ty + 1837y = - yary + irxrzel(el-ez-e3)J

Taking the time derivative of n = Re(XIXZ*X3*) = T,T,T3c08(9,-9,-85) ,

we have

n=- (rp+T3-v1)n . (3.4)

Hence, if v, <y, +Yy , n(t)-0 as t+o

Let Y= (X;,X,,X;) , then the set I = {Y:n=0} 1is an invariant set
in the sense that, if Y(Q) er , then its corresponding full orbit is con-
tained in L ; i.e., Y(t)el for all te (-»,») . The subset

Ly = {Y:rj =7 =0, j#%, j,kef1,2,3}} of I is also an invariant set.

| We shall show that, if vy, # v, , the subset L, = {Y: cos(8,-9,-93)
= 0,8tn(8,-8,-03) = v}-I, , v=1,-1 , of I 1is an invariant set, in
this case, in the sense that, if Y(0) e ZV , then Y(t)e Z\) for almost
all te (-»,») . Assume that Y(0)«¢ Zv . Since (3.1) has a unique solution
for each initial condition, Y(t)e - I, for all te (-»,») . Hence, at any t,
at most one of the rj (;:)'s is zero. Furthermore, all of the rj (t)'s are
non-zero for almost all te (-w,»). For, if vy, # v, , Eq.(3.1) does not
have a solution such that one of the Xj (t)'s 1is identically zero on some

interval in -I, . Since n(t)=0 for all te (-»,») , it follows that

e v ~—er>> ° L




roa(8,(t) -82(t) -9,(t)) = 0 for almost all t. (-»,») . Moreover,
3in (8, (t) - 82(t) - 8,(t))

sin{8,(t) -6,(t) -8,5(t)) has a discontinuity at t, , then rj (tl)rk(tl) =0,

o for almost all te (-»,») . Tor, Lf

j#k, j,ke (1,2,3} , since the real parts of the right-hand sides of Lq.
(3.3) are continuous. This implies that Y(t,;) e L, , which is a contradic-
tion. Hence, Zv is an invariant set, in the sense defined above.

In what follows, we consider the behavior of Y(t) with Y(0)¢ I,

where v=1 or -1. For t such that Y(t)ezv , (3.3) reduces to

T+ ielr1 = Y1 + Vrr;
i‘z +iezr2 = - erz - \)I‘1r3 . (3-5)
Ty +ié,r, = - vy, - vnyT,

Since H)(j (t)|| is finite at finite t , the integral curve of (3.5)
for t such that Y(t)e Z\) is identical to that of (3.4) for te (-=,»).
Hence, we can assume that Eq. (3.5) holds for te¢ (-=,») .

As mentioned earlier, all of the rj (t)'s are non-zero for almost
all te (-»,=). Hence, éj (t)=0 for almost all t except when T (t)=0 .
Since XJ. (t) 1is continuously differentiable at all t , BJ. (t) = ej (0) +ij (t) .

Here, nj (t) 1is an integer-valued step function which has discontinuities

-i8;(0) imn; (t)
when rj(t)=0 . Let xj(t) = vXje e vre J>7, 3=1,2,3 . Then,
xJ. is real and (3.5) reduces to
X; = Yi1Xp - X2Xs
Xa = - Y2Xp *+ X1X, . (3.6)

X1 = - Y,X5 + XX,

e : e ——— =

- e <o e iy e e = .
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The assumption that vy, ~v, +v, also leads to

3 , 3y , 3z _ 3
Rt ety v) <0, 3.7)

which means that the phase volume shrinks uniformly. The lLorenz svstem
also has this property3.

The equilibrium points of system (3.6) are easily obtainable. If
v, <0, the origin P, 1is the unigue equilibrium point and it is asymp-
totically stabhle in the large. If vy, >0, the equilibrium points are
P, and P;,u = (01 &, u(ma)l/z, virva) ), (0.,v) € 22 ((1,1,1),
a,-1,-1),¢1,-1,1),(-1,1,-1)} , The point P, is a stable node in the
(y,z)-plane and a saddle point in a plane containing the x-axis. At
P;’,u , the characteristic polynomial of the linearized vector field of
(3.6) is f(A) = A¥+A%2(y2+vs -Y1) *+ 4y,Y.ys = 0 . Since the polynomial
has one negative root and a pair of complex roots, f(}) =
(A+c){r-(a+ib)}{r - (a-ib)} where c>0 . By comparing the coefficients

of polynomials, we have

2a-c= - (Ya*Ys-Y:) , a?+b® =2ac , (3.8a)

c(a? +b?)

[}

4v1Y2Y3 . (3.3b)

Eq.(3.8b) implies that a>0 . Hence, at each P;’u , (o,u,v) €0 , there
is a bistable plane in which P;,u is an unstable focus.

Eq. (3.6) is invariant to the interchange of subscripts 2 and 3.
Hence, without loss of generality, we assume that vy, <Yy, . Let X=(x,y,2)

= (X1,X2,X3). The time derivative of a(t) éy(t)/z(t) is given by




a = (Yy-vy)a + x(1-a2) (3.9)

which is equal to wu(y;-v;) at y=pz , u=1,-1. Since vy,<v, , the
set [ = {X:]|y|l=z|z|]} 1is a positive invariant set; namely, if X(f)«T
at some t , then X(t)el for all t=x>t .

We shall show that T 1is an attractor in the sense that, for anv
initial point X, , X(t) converges to [ as t-= (i.e.,
Lim inf |IX(t) -X|| = 0) . Since I is a positive invariant set, it is
teo Xel
enough to show that, if X(t)e-T for all te [0,=) , X(t) converges to
I as t-o. Let B(t) = y?(t) - z2(t) , then the time derivative of =2

is given by
B = 2(v,2% - va¥?) = 20y, - Y2)2? - 2¥,8 . (3.10)

If X(t)e-I' for all te[0,) , then |y(t)|<lz(t)! (or B(t)<n) and
Y] < (ra/va) #lz(8)| (or B(£)>0) for all te[n,=) . Hence, 8(t)~0
as t=+e . For, if there is a B_<0N such that B8(t)+g as t-w

then &(t)2-2y,8 >0 from (3.10), since -B(t)<z?(t) . This implies
that B(t) does not converge as t-+« , which is a contradiction. Thus,
X(t) converges to 8T < T as t+= . Hence, T 1is an attractor.

If X(t) el for some t , the X-trajectory is trapped in
[,=0a{X:y>0} or I_=T7Tn {X:y<0} for t>t . Only this case
was observed in the computer experiment and some numerical results for
such a trajectory will be presented in the next section. The set T,
(resp., T_) has three equilibrium points P, , P:" , and P::,l (resp.,
Py , P_l,,.l and P,.:_l) and the combination of these points is identical

to that of the standard Lorenz attractor®.

e e . ————— T2 P
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We shall determine the behavior of the trajectories such that
X(t)e - T for all te< [0,). Since Eq.(3.6) is invariant to changing the
signs of any two of the three variables, it is sufficient to consider thc
set such that z>0 . Let W = {X: |ox| =ox, |uyl=uy, z>0}-W,

O,U
g,ue{-1,0,1} . Here, W= K ) {P’ }ulx,y,z-axis} . The set W is
o,u
(OQU9\))€Q
the invariant set and the X-trajectory with X, ¢ W does not hit W 1in
finite time. In what follows, the trajectory in ¥ will be disregarded.

Consider the following sets (see Figure 1):

S={X:a=0}n (W, , - T)
Wy = {X:a>0}n (W, , -T) ¢ . (3.11)
W, = {X:a<0}n (W, o -T) J
We assume that X(t,) € Snwl,0 at some T, . In WO’1J , (o,u) =
a,-1),(-1,1) ,
Ix] = ox lyl =oy , z<0 . ‘ (3.12)

Hence, the X-trajectory is transverse to S and enters W, nW; -,

In WpnW, _, , -1<a<0, a>0, x>0 and x>0 . Hence, from (3.9),
& increases. Thus, the X-trajectory enters W, nW, ;, in finite time.
Let X(T;)e (x,z)-plane n W, , and X(t,+e) ¢ W, oW,  , where
X(t)eWynW,,; forall te[t,,T;+e] . In W aW, , , 0<a<l, a>0

and x>0 . Hence, from (3.9) if X(t)eW,nW for all te {1, +¢,t],

1

a(t) = (vs-va)alt) = (v -v2)alti+e) >0 . (3.13)




;!
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This implies that the X-trajectory enters W, nW., | in finite time, since

it is transverse to the (y,z)-plane. Let X(r,)e€ (y,z)-plane ﬂwgyl and

X(z,+e)eW, aW_, | where X(z)eW, nW., ; forall te«([1,,1,*+¢]. In
WooW., ., x<0, x<0, y>0, y<0, z>0 and z<0 . Hence, if
X(T)eW nW_ for all rte [1, +e,t] ,

x(t) £ Yvix(1, +€) <0

y(t) < - v,y(t) . . (3.14)

2(t) < - y,z(t)

Consequently, if X(t) eW, 0W-1,1 for all te [0,0), then x(t)—~+-= ,
y(t)+0 and z(t)»0 as t+« . Otherwise, the X-trajectory hits
SnW., , in finite time. Similarly, if  X(t,)eSaW., , atsome T, ,
the X-trajectory converges monotonically to the x-axis ( x(t)+=) as
ta>w or hits SnW“ﬂ in finite time. Thus, if X(t) ewm -r  for
all te [0,°),then as t-+= , the X-trajectory converges to the x-axis
monotonically after some oscillation about the =z-axis, or oscillates about
the z-axis for all te [0,) (i.e., for any large t , there exist t,
and t, such that t,>t, >t , X(t,),X(t,)e (x,y)-plane and the X-tra-
jectory for Te [t;,t,] circles the z-axis).

Let us see roughly how the trajectory oscillating about the z-axis

for all te [0,) behaves. Integrating (3.10),

o , _ 1 ) . » ;
0 < Jo 2% (t)dt m { 8(0) ZYsz B(t)dtJ < . (3.15)

0o
The second inequality holds since B(t) <0 . Likewise, j y2(t)dt <=
0

) ———— -



By studying carefully the vector field of (3.6), we know that y (t)
(resp., z (t) ) takes a larger value than (‘an)l/z (resp., (y,y;)l/z)
at each time when the X-trajectory encircles the z-axis. lience,
y?*(t) 0 and 2%(t) #0 as t-o . Therefore, for any small = > 0,
the time duration for which y2(t)>e (resp., z2(t)>e) converges to
zero as t-+« . Thus, y2 (t) (resp., z%(t) ) behaves as a train of
pulses whose heights are larger than v,Y: (resp., 7Yi1v2 ) and
whose widths converge to zero as t»w .

The X-trajectory, which is in Wy aW., \ or W,aW, ., for all
tet,,») for some t, and converges to the x-axis monotonically, is
unstable in the sense that any small perturbation of o can shift X into
' or cause X to oscillate about the z-axis. For &=u(Y3 Y1),

(ly} =uy) on oI and the X-trajectory is transverse to S , and aI' and
S approach each other as |x|+= . The X-trajectory which oscillates about
the z-axis for all te {0,») is also unstable in the sense that X is
shifted into T by any small perturbation of o . For a = u(ys; -v2) »
(lyl=uy) on 3r and X(t) converges to 3 as t-« . Hence, from the
practical standpoint, the X-trajectory which remains in -(WuT) for all
te [0,~) can be disregarded. In fact, such trajectories were not observed

in the computer experiment.




IV. NUMERICAL EXPERIMENT

In the numerical experiment, we used the system:

)‘( =y, X - Yz
y = - Y,y + X s (4.1)

z=-2z4+Xxy J

which is obtained from (3.6) by the substitution:

Ygt"t s Yj/YS he YJ' , for j=1,2,3
(4.2)

X /Y3 +X , X /Yy *Y , X /Yy > 2

We set plasma density n, = 1.62 X 10" (/em®’) , beam density ny =1.85x% 10*
(/am3®) , plasma electron temperature Te = 0.25 (eV), beam electron temp-
erature T, = 0.033 (eV) , mi=1.16x10‘“(g), (z¢ ion), L=100 (cm) ,
2rL/k, =7 , 2mL/k, =13 and 2rL/lks]=6 . Then Yj << wj in (3.6) and
v, =0.4 in (4.1). For vy, satisfying 0<y,<v,+v, , Vd; 5.57 x 10°
(cm/sec) (88.2eV).

The trajectories for various values of vy, ¢ [0.2,0.6] are shown in
Figure 2. The minimum value of vy, +ys-v; is 0.8 for vy, e [0,0.6].
Hence, from (3.7), the trajectories in Figure 2 are on the set whose phase

volume is almost zero and which resembles a surface.

In order to understand qualitatively the dependence of the trajectory
behavior on v, , we use a simple model shown in Figure 3. This model con-
sists of two planes K, and K, containing the unstable foci F, and F, ,

1

respectively. The trajectories spiral slowly away from F, (resp., F, ) on

e e 2 ——
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K, (resp., K, ) and jump from K, (resp., K, ) to the line L, (resp., L,).
Let « be the ratio of the frequency and the growth rate of the spiral
trajectory. In the actual system, «=|b{/a at P; L (o,u,v) € , and

’

from (3.8),
(k2 -3/ (¥+1) = (vy+vy-v) Y vers (1.3a)

E_:-(KZ - 3)2 (k2 + ) (y2 *v3-v )XY+ v1 YY)

dy, 4(1+K‘2)Y12\{2Y3 <0 . (4.3h)

Hence, as vy, increases from 0.2 to 0.6 , « decreases from 5.56 to

3 monotonically. Furthermore, Pt’l and P:t,1 move away from the x-axis
perpendicularly to the x-axis. Taking into account these properties of
the actual system, we consider five cases as shown in Figure 3. Here, as
the system changes from (a) to (d) , x increases and F, and F,

move upward. Thus, the transition from (a) to (c) 1in Figure 2 is simi-
lar to that from (a) to (c) in Figure 3.

In Figure 3(a) , the focus F, (resp., F, ) 1is below L, (resp., L, ).
Therefore, there may exist various types of trajectories shown in the figure
and their combination leads to the trajectory as shown in Figure 2(a).

Since the trajectory can be arbitrarily close to the origin, the attractor

may be unbounded. In Figure 3(b), F, (resp., F, ) 1is above L, (resn., L,).
Consider the trajectories tangent to L, and L, at G, and 6, , re-
spectively and the shaded region which thev surround. This region is ob-
viously a local attractor in the sense that any trajectory sufficiently

close to the region enters the region at some time and remains there.

T e v e - - G e e
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This case corresponds to that in Figure 2(b). As <« takes on larger values
the trajectory tangent to L, (resp., L,) becomes closer to 4. fresn.,f,
Assume that, for some value of « , the point B, is above A, , as shown
in Figure 3(c¢). Then, the local attractor of tyne (b) is replaced by
that of type (c). In Figure 3(c), we have omitted another local attractor
which is symmetric to the one shown under 180°-rotation about the v-axis.
We have alsc omitted the points A, B,, D,, and G, on L, and E, and

H, on L, , which are in the omitted local attractor. If the points Bi

and Cj are located between Ej and Hj’ j=1,2 , then these two attrac-
tors are separated and interlinked with each other. This case corresponds
to Figure 2(c). Assuming that « is sufficiently large so that D, coin-
cides with G, as shown in Figure 3(d), the local attractor of type (c)
disappears.

In Figure 2(d)-2(f), stable interlinked double limit-cycles and a
single limit-cycle are observed. They have a small numeber of loops. In
order to understand their formation, we consider the one-dimensional re-
turn maps of trajectories of the actual system. Figure 4(a) shows the yraph
of the value X of x on the plane T+={X]z=9,x,y>0} with respect
to the previous value of x on the same plane. In Figure 4(a), the circled
points indicate the positions of the observed limit cvcles. Actually, as
shown in Figure 4(b), the mapping from a sufficiently small interval con-
taining the circled point on the x-axis into the x-axis is a contraction
mapping with respect to the length of interval. We now assume that the
actual system has a transition such as that from case (c) to (e) and
then to case (d), as shown in Figure 3. Figure 3(c), (e) and (d) implies
that, as « increases, A, and D, approach G, , while B, and D,

approach each other more slowly. Then, the local attractor becomes narrower

).
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and finally the double-loop local attractor case (e) appears and lasts until

case (d) occurs. It becomes more probable that the interval for contraction

mapping appears as dx/dx decreases in the local attractor (indicated hv
a solid line) in Figure 4(a), which “1npens as the local attractor becomes
narrower. Thus, as « increases, limit cycles having a small number of
loops appear. From Figure 4(a), a single-loop limit cyvcle must apnear after
a double-loop cycle. It cannot, however, exist in the local attractor of
type (c). This may be the reason why the interlinked double limit-cycles,
cach of whick is a single-loop, are not observed in the actual system.

In Figure 4(c), we also show the graph of values x of X on
T, f(resp., T_={X:2=0,x<0,y>0}) with respect to the previous values
of x on T_ (resp., T,) for y,=0.2 and 0.45 . Figure 4(a) and (c)
show that the return maps are 'folded’ He for v, ¢ [0.2,0.489]. The at-
tractor produced by such a map is called a 'chaotic attractor'. ' In this
attractor, there may exist stable periodic solutions. If thev exist, the
attractor is not a strange attractor. Here, by a strange attractor, we
mean a positive limit set of the integral curves of a differential equation
which is neither empty nor an equilibrium set nor a closed orbit. Since
the size of the region of attraction for the stable periodic solution is
usually small, a small perturbation will expel the trajectories from the
region. Hence, even if stable periodic solutions exist in the attractor,
we actually cannot distinguish a chaotic attractor from a strange attractor.
We cannot prove here whether our system has a stable periodic solution for
¥, ¢ [0.2,0.4891. Hence, we do not know whether the attractors obtained
in the experiment are strange attractors.

If the attractor A of a system is ergodic and u(X) is a defined

measure on A , then for any smooth function f ,
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i T
f= J £X)duX) = 2im %} dt fX(v)] . (3.8)
A T 0

et d

Also, if the time evolution of the system is mixing, then for any smooth

functions f and g,

tt) =g - jA EIX(0)] g (X )du (Xe)
. (T
-Eg - tin -T-j dt £[X(t+r)] g [X(t)] 4.5)
Tooo 0

converges to zero as T+« . This property means that the time evolution
of the system trajectories is highly sensitive to the initial condition.
The solution with such a property is defined as a turbulent solution.!’$
We do not know whether our system has the property of ergodicity or mixing.
In order to obtain some idea on the sensitivity of our system to initial
conditions, we have calculated the autocovariance functions R(t) of x
for yv,=0.2, 0.45 and 0.49 (see Figure 5). Although we cannot draw
any definite conclusions from the results, they suggest that R(t) conver-

ges to zero as t-~+« and the system has the mixing property.

We shall consider whether the solution of system (3.6), with a
specified initial condition which is not on the x,y or z-axis, is uni-
formly bounded on the time interval [0,) . We have calculated, for some
initial conditions, the ratio P(x) of the sum of the time duration when
x(t) exceeds x for te[0,T) and T ; namely, P(x) = [length of
{t:x(t)2x,0st<T}]/T . In Figure 6, we have plotted only those values
of x for which P is insensitive to the initial conditions. As T in-

creases, the set of such values of ¥ also increases in size. Hence, it is

......
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likely that, as T+« , P approached P_ , which is independent of the
initial conditions. If this is true, then P_(x) # 0 at finite values
of x , for we can choose an arbitra-ily large initial condition whose
corresponding trajectory also has P_ (x) . Thus, if P_ exists, the
solution of (3.6) with any initial condition is not uniformly bounded on
the time interval [0,«) .

If P_ exists and decays faster than 1/x’ , then from the physical
point of view, we can state as follows: the wave energy can be arbitrarily

large over a finite time interval, but its time duration is so short that

T
the time-averaged energy 1lim (1/T)I x2(t)dt = r szm(x)dx is finite.
T 0 0 .

Then, the unboundedness of system (3.6) does not contradict the physical
requirement that the energy of a system must be finite.

We must show that the assumptions made in Section 2 in deriving
(3.6) are consistent with the numerical results, or that the assumptions
are valid for the observed values of ||X(t)|| . Although this is true,
it is still possible that, at some t which is not realized in the experi-
ment, ||X(t)|| is so large that the assumptions are violated. If the
value of ||X(t)| violating the assumptions is much larger than the ob-
served value of [|X(t)]| , the violation of the assumptions rarely happens
and the system (3.6) is valid most of the time. '

Nonlinear terms in (1.1) produce only small shifts in frequency,
since |VA,| or |[VA,| %y, |x|<<w, for the observed values of [x(t)|
2 ||X(t)|} . The electrostatic potential of plasma wave 'l' is given
by ¢, = {Y,/V(Zklz/Snmpe) }x . llence, the energy density per unit wave
number at k, , which is comparable to that at k, , is given by

E, = k;%¢,%/87 5 107!® x? (erg). This is much smaller than the kinetic
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energy of the electrons E,, = 6.15x 10"'3(erg) for the observed values

of x(E). Hence, VTe is constant since waves 'l' and '3 are only plasma
waves excited in our model. Therefore, Y, s Yy and V are constant for the
observed values of x(t). The bounce frequency of trapped electrons is

given by wp = (ek12|¢1|/me) Ve 3.37><10"|x|1/2 (sec™!). The beam particles
pass through the plasma in L/vd = 1.8%x10"7 (sec) , which is much smaller
than the trapping time 1/w, = 2.97x 10'5‘]x|'1/2 (sec) for the ohserved values
of x(t). Furthermore, the velocity distribution function of the beam is
time-independent at the surface of the plasma. Hence, the velocity distri-
bution function of the beam can be approximated to be independent of time
and space in the plasma slab. Thus, Y, is constant for the observed values

of x(t).

V. CONCLUDING REMARKS

We found that the behavior of the system of resonant three-wave
interaction with linear growth and damping terms is completely different
from that without such terms or that apporoximated by a two-wave model.
Although it is not proved mathematically that the system (3.6) has the
statistical properties of ergodicity and mixing, numerical results show
that the solution (3.6) is very sensitive to its initial condition. This
suggests that a turbulent state can be produced directly by a linearly
unstable wave through the interaction with two linearly damped waves. We
note that, in such a mechanism, neither any additional input of random-
ness nor any interaction between a large number of waves is necessary to

produce a turbulent state.
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System (3.6) is a highly simplified model with many assumptions. In
an actual plasma, however, many wave-wave and wave-particle interactions
must be considered. Very little is known about the chaotic property of a
system with dimension m 2 4 . It might be completely different from that
of a three-dimensional system. Hence, at present, it is difficult to cor-
relate the numerical results obtained for system (3.6) with the turbulence

in an actual plasma.
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Fig.1:

Fig.2:

Fig.3:

Fig.4:

Fig.5:

Fig.6:

FIGURE CAPTIONS

Sketch of the surface S where d(y/z)/dt = 0 , the sets
W, and W, separated by S and the boundary oI of the
set T.

Projections of the phase-space trajectory of equation (4.1) onto
the (x,z)- and (x,y)-planes for te [0,3,276) and various
values of v, : (a) y;=0.2, (®) v1=0.45, (c) v,=0.489,
(d) v, =0.49, (e) v,=0.5, (f) v,=0.6; tr = transient.
Sketch of the local attractors of the idealized system.

Return mappings of the actual system.

Autocovariance functions R(t) of x(t) obtained from
32,768 data points for te [0,6,554).

The ratio P(x) of the sum of the time durations when
x(t)2x for te[0,T) and T; T = 6,554 .
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The stability of planar, mode-converted, lower-hybrid solitons
to transverse perturbations is investigated. Two classes of modes are
found. In the lowest order, the stability of each class is related to
a particular term of the equation governing the nonlinear evolution of

these waves.
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I. INTRODUCTION

It is well known that one-dimensional Langmuir solitons are
modulationaily unstable to transverse perturbations.! As a result of
the instability, the soliton breaks up into collapsing bunches with longi-
tudinal and transverse dimensions of the same order.?’® There is much
interest in electrostatic plasma waves with frequencies near the lower-
hybrid resonancz frequency as a possible method of heating tokomak plasmas.
According to linear theory, cold-plasma waves, excited by an rf source
at the surface of a magneticglly confined plasma, propagate in resonance
cones?® into the interior of the plasma until they reach the lower-hybrid
resonance layer, where they may mode-convert to a slow hot-plasma wave."“’®
Nonlinear ponderomotive effects on the cold-plasma wave®, as well as the
mode-converted lower-hybrid wave’, have been examined in a two-dimensional
geometry. Recently, the effect of a third dimension on the cold-plasma
wave was studied and it was found that perturbations transverse to the
soliton structure were unstable.® An equation governing the nonlinear
dynamics of mode-converted lower-hybrid waves in three dimensions has also
been presented.?

In this paper, we address ourselves to the stability of a mode-

converted, lower-hybrid, planar soliton to perturbations in the transverse

direction. We find that these-solitons are also unstable.




II. EXISTENCE OF UNSTABLE MODES
The equation governing the nonlinear evolution of mode-converted,

lower-hybrid waves is, according to Ref. [9],

. 3 2 3?2 32 3 2|, o
1axvroglvl “"’Bom“’”o’é?r“"’%{s? ] ]w 0 )

where

Q
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3
((upi/m)z(vi/m)2 *3 (wpe/mce)z(Ve/mce)2

ww?-w ?) wW?-u?)
.G s

in which wp and w b denote the ion and electron plasma frequencies,
i e ’

e and w c. are the electron and ion cyclotron frequencies, and
e i

v,? = 2T/m; , v =2T/m, . InEq.(1), ¥ is the normalized field

1
‘amplitude [KL/ 4no (Ti‘ + Te)AO] % ¢ associated with the electrostatic poten-

tial 2 of “he wave which has the form

o= ¢ expli(K/A) % X- dut] . 2




We scale Eq. (1) as follows:

Z=BOZ , X=87, Y=y (3)
and set
k=aB , =88 , B8=8y, 4)
Then Eq. (1) takes the fomrm
i 2y 2 el el U] v s Ay = 0 (s)
T 327 Ay e ’

which is the usual nonlinear Schriédinger equation with two additional terms.

For a=8=0, Eq.(5) is known to have the solution

v =\/§A sech(AE)exp[-i.wor + ikoz]

o)
= o E)exp[-iugT + ik,z] ©)
where
£E=2-Vr, V=2ko, A2==k02—mo , N
which is stable to perturbations in the z-direction. . ;
q
Next, we linearize Eq. (S5), setting w=wo+6w and assume that ‘
' -iwor + ikoz
Sy = [F(E,r)COSCky)') + G(E,r)sin(kyy)]e (8)

Eq. (5) then reduces to a linear combination of terms proportional to
sin(ky_v) and cos (kyy) . Setting the coefficients of each of these

- equal to zero yields

l‘k_‘ N
s
{
1
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P F = Ltk AF - 62F+FY) - kot (646N ©
i26= (1 + 8k,7)G - k8?(G+GY) + k ag? (F+ F¥) (10)
where 2
L, = - LA kp?
3g?
is a linear operator.
If we introduce
F=u+iv , G=r+is (u,v,r,s real) 1

u)

and set n, = [r} and g, = [V

s) , Egs.(9-10) take the form

= = (L, * 8k, )z (12)
.9 - 2y 2
= - Ped? - |10 =101
where L1 LO 2epc § [0 1] and o [_l OJ . We note that

Lo and L1 are self-adjoint operators and
Lo¢(£) =0, ' (14)
Assuming that

n = ne ¥ 4 coc. , g = e 1 4 coc.

Egs. (12-13) reduce to
. = 2
ign = (L + Bky )z (s)

- iz = [(Ly +BK,ME - 2ok ¢%0ln . (16)




The only eigenfuction of Lo that vanishes at infinity has an eigenvalue
of zero. Therefore, according to Eq.(15), ky= 0 1is the only marginally
stable state corresponding to Q=0 .

Egs. (15-16) can be reduced to the form

2 2 - 2 = N2
Ly * isky i, + Bky JE 2aky¢ oln=a*n (17a)
[(L1 + Bkyz)g - 2a¢2g] (Lo + Bkyz)c = Q%¢ . (17b)
For mode-converted lower-hybrid waves, KJ_~ 1, KH" e’ , I(” el s

where e?= me/mi . This implies that

Y0 k\’z kv :
Bkyz/Az ~ 3 ET- e?lgH <1, (18a)
o 4 Z
aky¢2/A2 <«<1l , (18b)
uls,&/mz <«<l1l , (18¢c)

where k_ 1is the component of the propagation vector in the original coor-
dinate system. Also, k %/k ? <<¢e? , and IS'/kz £1.7% For values
of k, in this rangé, Eq.(17a) can be solved by expanding n and Q@ in

the form of a perturbation series,

"= no + nl + nz oo s Qz = 61 + 52 oo etc.

in lcwest order, Egs.(17a,17b) reduce to

Llyng = 0 LLyg, =0 . 19)

3 2 STl ~ ~r— - . A




In order to determine n_, and ¢, consider the functions, ?

+ _ 3 - ] + = B b
U.O = - W’b ’ uO = 2 a—E’¢ ’ VO D, VO = -5t . (“O)
According to Eq. (14),
+
= 2
Lyve =0 . (21)

By differentiating Eq.(14) with respect to £ and A% , we find that
- - + + -
LQV0 =u, Lluo =V, Lluo =0 . (22)

Egs. (21-22) imply that

* *
LoLluo =0 , LlLoVo =0 . 23)

+

The only solutions of Egs.(19) that vanish at infinity are u_,v

+
; . Therefore,

o

+ + -
= + =c,'v_+c,'v
o Clu'o CZuo ’ Co 1% "% Y%

are the proper eigenfunctions of Egs.(19), where €1 € Cl" cz' are

. + _+ . - - .
constant vectors. The parity of u,sv, 1is even, while that of UV, 1is

odd with respect to £ .

In first order, Eq.(19) takes the form
2 - 2 =
LoLlnl + [Bky (LO+L1)§ LOZakyep g]no &1ng - (24)
Lo define the scalar product of two fumctions as follows:

0o
u{v> = f dEuv .
-0

Taking scalar products of Eq.(24) with vé yields
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2 + + + + +
SIS'<V0|V0>C1 b E;1<Voluo>cl (%)
and
2 - - - - - - -
! - 24k 2 - - n
[613,<uoiuo>§ Laky<uo!¢ !uo>g]c2 e,l<voluo>c2 , (26)

where we have used Eqs. (21-23) and the self-adjoint property of Lo and L,.

We note that

+, + 4A +, + 1 93 +, + 1
' P R — = - 2 o c— 2
“VoiV < 0 SVoluy> 7W<V0|Vo> KA ’ (27a)
1y s g 16 A s + o+
Uplug>= = <vglug > =<vlve> (270)
culoiig s o 84 AS
UOQO luo 1T 5 . (27¢)
Therefore,
2,2 3 &7 = - 48k 2A2 (28)
+ =1 Yy ¢

The eigenvalue Ei is obtained from Eq.(26) by solving the determin-

antal equation

] P e ) -2t
| BIS’ <uoluo> .£1<v°|uo> Za]S,<9Q|¢ |uo>
! 20k “162ly” 264" 1y - i P =0 (29
| .a.<y<uol¢ |u°> Bky <u0|u°>- El<v°|u°>
from which we find
T 4 . 252 . 32 A" (30a)
—~a 1 ey 2

\
\
L




1  ~cwr

where

Ak
= > 3 = arctan(b/a)

with growth rates

y+=2kyAv/§'

) Ya

1

“ /2
oszA Rk < y2 8k
Y-zig K {14.(% a)’xz}) -g- KEJ

Since the mode-conversion region is excluded (k_z,/ki) !K” | << 1, from which

we find that SK‘,K/CLAZ $e? , so that

- ,IE L
Y = ﬁdky)\ /K

ITI. CONCLUDING REMARKS

According to Egs.(28,30), unstable modes of either parity exist. In
first crder, positive parity states are driven unst;ble by the term
¢ 0(32/3\(2) v If §, were absent, Eq. (1) would be of the same form as
the squation geverning the nonlinear evolution of Lang;ﬁuir waves with ion
irertia neglected. It is this term which is responsible for the instability
of Langmuir solitons. Instabilities associated with negative parity modes
are dve in lowest order solely to the additional nonlinear term
300/ 191219 , which affects the stability of positive parity states in
seccnd order. The relative effects of these two terms can be judged by
corparing growth rates of positive and negative parity modes. We find that
v./v. $10e <21 in regions which are not mode-converting, which indicates

that the term 3, [(3/3Y) 91?1 is strongly destabilizing. We therefore




expect large local values of the electric field to exist as the wave prop-
agates away from the lower-hybrid layer, thus causing the soliton to break
up into many bunches, which move apart, spreading energy throughout the

plasma.
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ABSTRACT

Chaotic oscillations or strange attractors in bilinear systems
with linear feedback controls are explored, A simple sufficient condi-
tion for nonexistence of such oscillations is given, Also, the con-
struction of ellipsoidal bounds for the strange attractor is discussed,
The results are applicable to the well-known Lorenz equation and other

eqiations which are known to have chaotic oscillations.
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1. INTRODUCTION

Recently, it was discovered that the nonlinear mathematical models
of a number of physical processes exnibit chaotic nonperiodic oscillations.
A simple example is the Lorenz model [1] for thermal convection in a fluid

layer given by

; X, o(x, - x,)
E? X, ] = [X, = X; = XX/, (1)
X,y -bx, + X, X,

where O,r and b are constant parameters. It was found that for certain
ranges of these parameters, the trajectories of (1) in the state space are
attracted to a nonempty set which is neither an equilibrium set nor a
periodic orbit. On this set, the trajectories exhibit chaotic nonperiodic
oscillations. Ruelle and Takens [2] called such a set a "strange attrac-
to-". Oscillations having similar chaotic behavior were discovered in
other models such as those for chemical turbulence [3], population dynamics
[4], disk dynamos [5] and plasma turbulence [6]. A remarkable feature of
such oscillations is that their apparent chaotic or random behavior is
intrinsic to the model which is completely deterministic in nature.

In this paper, we consider a bilinear system of the form:
dx/dt = Ax + uBx (2a)

defined on the n-dimensional Euclidean space E" whose inner product is
denoted by (-,-). A and B are real constant n*n matrices, and u is a

linear feedback control given by

um= -K(F,x), (2b)

where ¢ is a nonzero vector in En, and K is a real number corresponding

R e D




to the feedback gain. We note that the Lorenz equation (1) can be re-

written in the form of (2) with

< o 0 0 0 o0
A= r -1 o] ; B=lo 0 -1|; c=(,0,007 (3)
o 0 -b 0 1 o0
and K = =1,

Although extensive studies have been made on bilinear control systems
[7]-{10], most of the attention has been focused on optimal control, vari-
ous system properties such as controllability and observability, and reali-
zation theory. Very little work has been devoted to the self-oscillation
of bilinear systems with linear or nonlinear feedback controls. Here, we
explore the possibdility of existence of chaotic nonperiodic oscillatiums
in system (2). We begin by studying the stability of the equilibrium
states of (2), and obtaining some estimates for the solutions. Then, the

existence or nonexistence of chaotic oscillations is explored,

II. STABILITY OF EQUILIBRIUM
Assuming that A is nonsingular, the equilibrium set E of system (2)

consists of all fixed points of the mapping H defined by
H(x) = K {c,x) A" 'Bx. (4)

Obviously, the zero vector belongs to E. Let x, be a nonzero vector in
E. Then,

-l ' -]
Ix Il = IRl IGerxy a7 | < [Kllelll a8l 2 9

Hence, any nonzero equilibrium state must lie outside or on the sphere

with radius p = (IKllcﬂlA-lB")-l. Also, since H is an even operator




(1.e. H(~x) = H(x) for all x€E"), hence for any nonzero xee E, -xe¢ E,

Now, consider the equation
x = H(x) (6)

for determining the equilibrium states. Since K(c,x) is a real number,
any nonzero solution xe of (6) must be an eigenvector of A-IB correspond-
ing to some nonzero real eigenvalue. Moreover, (c,xé # 0. Hence, any
nonzero equilibrium state x, must belong to n(A-lB)-Ln{xéEn: (c,x) # 0},
where n(A-lB) denotes the null space of A'B. Let vy be an eigenvector
of A-IB associated with the nonzero real eigenvalue )‘i' Then, its cor-

responding equilibrium state Xy has the form avy, where the scalar o can

be determined by substituting av, into (6), 1.e.

-1 2
av, = K(c,avi) AT 'B(av,) = A\ Ka (c,vi)vi

or '
a = /0K {e,v.)), (7

provided that K (c,vi)# 0.
Evidently, if A"'B has n distinct nonzero real eigenvalues )‘i with

corresponding eigenvectors v,, then the equilibrium set E is given by

i’
E = {0} U{vi/(kil( (c,vi)): K(c,vi) $ 0, i=1,...,n} . (8)

Since {vi,i-l,...,n} is linearly independent and ¢ # 0, there exists at
least one i, say i=k, such that (c,vk) ¢ 0, Thus, for any nonzerc K, E
has at least two and at most (n+l) distinct points. In the case where
A"'B 1s a simple linear transformation with repeated real eigenvalues,
say )‘i = )\ with eigenvectors Vs 1t€I1g{1,...,n}. Then, for K ¢ 0 and
cg [span{vi,ie 1}]'1', E has an infinite number of equilibrium points,

since any nontrivial linear combination v of such vi's 18 again an eigen-

—w 7 i I ‘ .IM. » 7



-1
vector of A B with (c,v) # 0.
To study the stability of an isolated equilibrium state x,, Wwe con-

sider the following linearized system about X,
déx/dt = Jf(xe)éx, €))

where Jf(xe) 1s the Jacobian matrix of f(x) = Ax - K{c,x) Bx at x, given
by
T)

Jf(xe) = A - KB{(c,xe) IL+xcl). (10)

Obviously, the stability of the origin is determined only by the eigen-

values of A. At a nonzero equilibrium state x = vi/(AiK (c,vi)), we
-1

have A Bxe = Xixe or Bxe = Avi/(K (c,vi)). Thus, Jf(xe) can be re-

written as
Jo(x) =4 {1 -{e,v )71v T} - A7'B (11)
£ e i i i

which is independent of the feedback gain K. This is evident from the
fact that for K¢#0, we may introduce the scaling x=x/K, Thus, (2) is equi-~

valent to the system

dx/dt = A% - {c,%)B%. @n
I1I. ESTIMATES FOR SOLUTIONS; INVARIANT SETS
First, we derive a few elementary estimates for the solutions of (2)
under various assumptions on A and B.

denote the eigenvalues of (A + AT) and

Proposition 1l: Let “i and Aj

(B + BY) respectively, and 4 = max{ui}, [A] = max{lkjl}. Assume that
i
vi |k[lelllxl > 0.  Then, a solution of (2) starting with x at t =0

satisfies one of the following estimates:




~
(i) for u=0:

Ixcer Il < lIx llx = vix fe/2)™" for a1l c€[0,2(|x |V (;

(11) for i1>0:
Ix(e) || < ||xo||[(ﬁ + leol)exp(-ﬁt/Z) -vlx |17

for all tEE[O,tli, where

- ZGflln[l + G(v"xou)-ll;

(ii1) for 1i<0 and “xoﬂ < 107, x| < Ixon for all t20. Moreover,
Ix(e)|| + 0 as t+,
Proof: Let V(t) = ||x(c)|?. By direct computation
dv/dt = (x, (A + AD)x> - K, x5<x, (B + BHx>
a i
< v + |k|lcllxlli¢x, B + BT)x>| < (1 + wiH)yv 4 h(V) (12)

2

with V(0) = ﬂxol
For ﬁ>0, h is a strictly monotone increasing function of V.,

Consequently, V(t) = ||x(t)||2 g w(t), where w is the solution of

. 13)

. 1
dw/dt = (u +-vw2)w, w(0) = "xo
Solving the above equation for each case with ﬁ-o or ﬁ>0 leads directly to
" 2
the estimates (i) and (ii). When W<0, dV/dt<0 for 0<V < (|§|/W)°. Re-
sult (i1) follows.ll’
In the special case where B is skew-symmetric (i.e. B--BT), we have

the exponential estimate:

Ix¢e) || < Ix Jexp(fit/2) for all e30, (14)

which implies that no solution has finite escape time, Finally, when both

A and B are skew-symmetric, |x(t)|-|x°" for all t or the solution remains

iy i
v‘ !
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on the sphere with radius “xOH at all time,
Now, we give lower bounds for the solutions.

Proposition 2: Let ﬁ denote the minimum eigenvalue of (A + AT) and

x|,V be as defined in Proposition 1. Then the solution of (2) starting
from x, at t=0 satisfies one of the following lower bounds:

(1) for y=0,
h=xCe) |l > [x ll/¢x + vl |e/2) for all t30; (15)
(11i) for E#o,

Ixe) || > ﬁﬂxou/[(ﬁ - v"xo“)exp(-ﬁt/Z) + v|xOH] for all t30. (16)

Proof: Let V(t) = ||x(t)|? Then,

3
av/de > 4V = K(c,x){x, (B + BD)x) » (u -vvi)v (17)

with V(0) = "xoﬂz. Consequently, V(t) = ||x(t)|? > w(t), where w is the

solution of

i
dw/dt = (u - vw?)w, w(0) = "xoﬂz. (18)

Solving (16) leads to estimates (15) and (16).

We observe that for ﬁ>0 and ﬁ<0, the lower bound (16) tends to ﬁ/v
and zero respectively as t+«, Also, the lower bound (15) tends to zero
as t+o,

Now, we consider the existence of linear subspaces in E" which are
invariant sets of the system.

Proposition 3: Let A represent a simple linear transformation or E"

~

with distinct real eigenvalues i; and their corresponding eigenvectors Vis
i=1,...,n. Let JC{1,...,n} denote the index set such that {Xi:iEEJ} re—
presents all the uncontrollable modes of (A,B) and all the un:bservable

modes of.(A,cT). Then, span{sl;iGEJ} is an invariant set of (2).




~ -] -
Proof: Let T = [31{---Evn]. Since A is simple, T exists and T AT =

A= diag[xl,...,i;]. Let x = Tz. Then, (2) is transformed into the

following form:
dz/dt = Az - K{c,Tz) T 'BTz. (19)

If Tj is an uncontrollable mode of (A,B), then the j-th row of T™'B must
be zero. Also, 1if i}

column of cTT must be zero. In either case, the equation corresponding to

is an unobservable mode of (A,cT), then the j-th

the j=th mode reduces to dz, /dt = 7 2z Thus, the subspace spanned by

b 37y

V. is an invariant set of (2), and the desired result follows.||

3

For a general linear transformation A, we can introduce the usual
canonical decomposition of the state s;pace of the linear system: dx/dt =
Ax + Bu, y =(c,x) according to its controllable, uncontrollable, observa-
ble and unobservable modes. It is easy to see that the subspace cor-
responding to the uncontrollable and/or unobservable modes of the fore-

going linear system is an invariant set of {(2).

IV, CHAOTIC OSCILLATIONS
The existence of chaotic oscillations or strange attractors depends
on the manner in which the stable and unstable manifolds intersect with

each other. Given a system such as (2), suppose we could find all the

bounded invariant manifolds of the system, then we could seek chaotic oscil-

lations by deleting those invariant manifolds which correspond to the
equilibrium set and periodic orbits. The

remaining ones, if they exist, may consist of solutions which are almost
periodic,pseudo-random or chaotic functions of time, The distinction
between thie almost periodic solutions from the pseudo-random solutions
can be accomplished by investigating the asymptotic properties of their

correlation functions, provided that these solutions are known. The




X

foregoing approach, alchough conceptually simple, represents a formidable
task from the analytical and/or computational standpoints, So far,cha-
otic oscillations in certain nonlinear systems were discovered through
numerical computation and bifurcation analysis, It is desirable to have
readily verifiable amalytical conditions for determining the existence of
chaotic oscillations directly in terms of the right~hand-sides of the sys-
tem equations. Lacking such results at the present time, we shall re-
strict ourselves to the less ambitious tasks of establishing simple suffi-
cient conditions for the nonexistence of chaotic oscillations, and obtain-
ing bounds for the amplitudes of the chaotic oscillations when they exist.
Theorem 1: If A-%-A'r is negative definjite; B is skew-symmetric, and
c e n(A-IB), then system (2) has no periodic, almost periodic or chaotic
oscillations,
Proof: Since any nonzero equilibrium state of (2) must belong to n(A-lB)‘L
N{x€E":{c,x) # 0}, hence the zero state is the only equilibrium state if c
N(A~'B). Sinee A+A is negative definite, <x, (A+AT) gk I [?for a1l x€E ,where
is the minimum eigenvalue of A+AT. Since B is skew-symmetric, x(t) has a decaying
exponential upper bound given by (14), implying that t\he origin is asymp-
totically stable in the large. Hence, no periodic,almost periodic or
chaotic oscillations can exist.]]

Assuming the existence of chaotic oscillations, we proceed tc con-
struct an ellipsjiodal domain § in E" which contains the invariant mani-
fold generated by the chaotic oscillations. This invariant manifold
does not contain any equilibrium states.

Consider a quadratic form in x given by
V(x) = {x~%,Q(x=-X)), (20)

where X is a constant vector in E" and Q is a positive definite symmetric

A i - s o .

© —r -
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matrix. We shall make use of V to establish conditions under which (0 is
an attractor of (2) in the sense that every trajectory initiated from
the exterior of {i eventually enters 0 at some finite time c1>0 and remains
in Q for all £>t,,or tends to I as =, Clearly,such a {I contains all the
trajectory points of the chaotic oscillations when they exist.

Theorem 2: Suppose that A is nonsingular and there exist a nonzero
vector XEE" and a positive definite symmetric matrix Q such that

(1) QB is skew-symmetric;

(ii) GQATQ+QA+KP is negative definite,where P = c?TQB+BTQ§cT,
then there exists an ellipsoidal set Q-{xEEEn:V(x) £ o} which is an at-
tractor of system (2) containing the manifold generated by the chaotic

oscillations when they exist.

Proof: Consider dV/dt given by

av/de = (x, (ATQ+QA)xD ~ K{c,x0{x, (BYQ+QB)x) - 2{x,ATQ%)
+ K¢e,x)({x,BIqx) + (X, qBx)). (21)
In view of condition (1), the second term in the right-hand-side of
(21) vanishes. Rewriting the last term in (21) as K<x,Px), (21) reduces
to
dv/dt = {x,Cx) - 2<x,ATQ§>. (22)
From (i1), G~ exists. We can rewrite (22) as
dv/de = (x—xs,G(x-xs)> -C, (23)
where x_ = G-IATQ§ and C = (xs,st). Since A is nonsingular, Q is posi-
tive definite and X # 0, hence xg % 0, Evidently, at any point extericr
to the ellipsoidal set ﬁé {xeE": - (x-xs,G(x-xs))slcl} , dV/dt < 0.
Also, since 5'13 bounded, there exists a real number o such that the ellip-
soidal set Q -A'{xEEn: V(x) g a} contains 5. Consequently, we have dV/dt

<0 along any trajectory exterior to §l, which implies that {i is an attractor

of (2).]]
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Remarks:

(R-1) Condition (i) requires the existence ¢f a positive definite

symmetric matrix Q such that
T
B°'Q + QB = O, (24)

Rewriting (24) in the usual form of a linear equation Sq = O with

S = BTQQI + IQDBT and q = (qi,...,qi)r, where qay is the i-th column of

Q and @ denotes the Kronecker product, we see that for the existence of
a nonzero q or Q satisfying (24), S must be singular. Since the eigen-~
values of S have the form Ai + Xj’ where Ai and Aj are eigenvalues of B,

there must exist ki and A, such that ki + A, = 0. This is possible if

b 3

and only if at least one of the following conditions holds: (i) B is
singular; (ii) B has real eigenvalues symmetric about the origin, and
(ii1) B has one or more complex conjugate pairs of pure imaginary eigen~
values., For the special case where B is skew-symmetric, all its eigen~

values lie on the imaginary axis. Hence (24) has nontrivial solutions

Q. The requirement that Q be positive definite imposes further restric-

tions on B. Results for a special forﬁ of B were given in [11] and [12].

(R-2) Condition (ii) requires the negative definiteness of G. We
note that if B is singular, then for all x€n(QB) (the null space of QB),
(x,Px) = 0 regardless of the choice of %. Therefore, in this case, a
necessary condition for G to be negative definite is that HT(ATQ + QA)I
be negative definite, where the matrix H'represents the projection onto
n(QB).

(R-3) Given a pair (%,Q) satisfying conditions (i) and (ii) of
Theorem 1, the smallest ellipsoidal set {1 containing ﬁ‘can be found by

solving the following standard constrained optimization problem: Maximize

10
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R - O

Vix) = (x-—i’,Q(x—i)) over the ellipsoid 3= {x€ Ee:<x-xs,G(x-xs)> = C}.

Although this problem can be solved exactly, it is useful to construct an

ellipsoidal set ' (not necessarily the smallest one) which contains a.
1)

~ 3 R |
Let w = Q%(x-;) so that Ve [w|? and Q ={w€E":-{w-Q? (xs-?c') , Q26Q 2 (w~

Py
Q? (xs_;)> < |cl}.  since
= T S S N
¥lhw-Q2 (x %) | < K- (x %) ,Q7%6Q7% (w-Q% (x X)) < |c], (25)

where Y 1is the minimum eigenvalue of the positive definite symmetric matrix
1 1
-Q 2GQ 2, we have

1 i ~ L
fwll = [Q*(x =0 < |w-x~%) || ¢ ([c|/v)? (26)
or
P
vl < del/m? + e -0] = va'. (27)
Thus, . he ellipsoidal set
Q' = {x€ " {x-X,Qx-)D> g a'} (28)

contains ?2'.

An alternate approach Is to find a pair (X,Q) satisfying conditions
(1) and (1i) such that the ellipsoidal set containing Q has the smallest
volume.. This problem is not so straightforward.

(R-4) If system (2) has invariant sets of the form span{'\;'i;iel}
as described in Proposition 3, then their intersection with the invariant
manifold generated by the chaotic oscillations must be empty. Moreover,
the invariant sets span{\'?i} assoclated with the positive eigenvalues 'Xi,
1€J can have at most the zero vector in common with the ellipsoidal set

 in Theorem 2.
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V. EXAMPLES
First,we consider an equivalent version of the Lorenz equation in the
form of (2) with variable feedback gain K, and A,B,c given by (3).

Assuming that bs0 and 0(l-r)#0, A is invertible. The eigenvalues of A B

given by
o o (@n”t
AT'8=]l0 o @a-n? (29)
o - o
are
0 "%
M0 Ay 5= ab@-n]T (30)

Thus, the equilibrium set E consists of the zero state and

val (A K{e,v,)) = K (AG-D), /B =17, 1-0) T, )
(31

val KL e,v,)) = K (=B (-1, - (D), 1-0) T,

~1
where v, and v, are eigenvectorsof A B corresponding to A, and A; re-

spectively, Also, the eigenvalues of A are given by
y

A =) +82)/2,  Ay=[-(140)-8%1/2,  Ay=-b (32)
and their corresponding eigenvectors 31 are
3
20/ (0=-144") 20/(0—1—A%3 0
T = [$,iV,1¥,] = |1 1 0 (33)
' 0 0 1
where A=(1+0)2%-40(1-r). If 0 and A are nonzero, then T 'exists and
-d i
0 0 -40rld 2 [0-1-A2]
- + toreab
T B= |0 0 4ord % [o=-1+A2]
0 1 0 (34)

i
CTT = [20/(0-1+A%),20/(0—1-A2),0].
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Evidently, (A,B) is completely controllable and ;a is the only unobserva-
ble mode of (A,ct). From Proposition 3, span{qs} is an invariant set of
the system. Since B is skew-symmetric, the solutioms have an exponential
upper bound (16) with f= max{-2b,-(140)£[ (1-0)*+(o+r) 217},

Now, we apply Theorem 2 to construct an ellipsoidal set @ which con-
tains the orbits of the chaotic oscillations when they exist. To simplify
the computations, we make use of a function V of the form (20) with a di-
agonal matrix Q = diag[qll,qzz,q,,). To satisfy condition (i) of Theorem
2, we must have q,,=q,,. Let X = (;x';;’;’)T. Then, the matrix G in

condition (11) of Theorem 2 1is given explicitly by

-20q,, oqll+(r+K§;)q,, 'anag;
G = 0q11+(t+K;3)q,! °2q;3 0 (35)
~
—KQSSX?. 0 -qugg

We must choose q,,,q;;>0 and ¥ such that G is negative definite, For ex-

pedience, we set
%, =0, X, = -(0q,,+ rq,,)/(Kq,y,) (36)

so that G reduces to a diagonal matrix. For ¢,b>0, G is negative definite

for any positive q,, and q;;. Now, we have dV/dt <0 at any point exterior to
o~ 3

the ellipsoidrlsetQ = {x€E : -(x-xs,G(x—xs)> < |c}}, where

-1, T~ - ~ T
xs =G IA Qx - (xl/zg"a‘lllxl/(zq,;),‘(Uq““‘fq”)/(ZKq;g)) M

37
-1 ~d 2, 2
C = <x_,6x_» = =(1/2)q5,{0q; , % (43440, )+b(0q, y+rq,,) /K" }.
The remaining task is to construct an ellipsoidal set

f2 ’{er3 :(x—?f,Q(x-i)) - qll(xl-;x)z"'qggxiﬂga[xg"'(UQI 1+1'q33)/(Kq33)]2S0}

(38)
which contains {l. Such a set is given by Q' in (28) with

13
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Lo L
vt = (lel/m? + It B | = [lc]/ @ minf1,b,011F
,\;2 2 -1 2 2 1
+ (1/2){q, ¥, (1 + 07q,,d;5,) + (0q;, + rdy;) /(K qy,)1}7, (39)

where C is defined in (37)., We wish to choose q,,,q,, and §; such that

the volume of '

2
4T 2 i, 4T i1 . a q;,
Vor = 5l(a') /q;,)2q55 = mg(lcllﬁt 7[q“x1(l +

q33

2

(0q,,+rq,;) 7?%)3

—_— (40)
K q3;

is minimized. Since for any fixed q,,,q,,>0, VQ, is a strictly monotone

increasing function of 2; for QE;O, hence we set ;,-o in (40). The re-

sulting Vg, can be rewritten in terms of the ratio g=q;,/q,,

: -5
Vogr = (4n/3) (/b7 (2y) + 1/2]%|K|3q 2(o+rq)?, (41)

which has a minimum point in [0,#[ given by Q = 50/t.
This gpecifies a Q'-{xEE’:xfﬁx:ﬁ[x,%r/(SK)]2((9/5)(ch-z) (VY2b7/x + 1)2}
which contains the manifold generated by the chaotic oscillations.

It is known [1] that for Km=-1, o=10 and b=8/3, chaotic oscillations
or a strange attractor exist for r > 24.06. Since for K#0, systems (2)
and (2') are equivalent, we conclude that chaotic oscillations exist for
the foregoing values of c;b and r and any K¢O, The peak magnitudes Ixil
of the oaciilations or the size of the strange attractor are inversely
proporticnal to [K|.

Figure 1 shows a typical buildup of the chaotic oscillations in the
time domain for the foregoing values of o,b,K=1 and r=30, The projections
of the trajectory onto the (x,,x,) and (x,,x,) planes are shown in Fig.2.

For these parameter values, VQ. given by (41) has a minimum point 3-5/3

14
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which gives Q' = {x€E': x2/(61.185)% + x2/(47.394)2 + (x,+36)2/(47.394)>
< 1} containing the strange attractor. The ellipses corresponding to the
boundary of Q' in its principal-axes planes are also shown in Fig.2. It
should be mentioned that nonellipsoidal bounds for the strange attractor
of the Lorenz equation have been obtained using certain invariants of the
equation with O=0 [13],[14].
Besides the Lorenz equation, there are a number of other nonlinear

systems which are known to exhibit chaotic oscillations and can be written

in the form of (2). An example is given by Rossler [15] where A,B and c¢

are
-1 -1 0

A={1 o o |, B=l0o 0 o, c=,0,0T, (42)
0 -r 0

and K=-1, Here, A is nonsingular if ob$r. The equilibrium set E con-

1-b)T. It can be

sists of the origin and the point (=Ob+r,b-ro™},rc”
readily verified that (A,B) is completely controllable and if O#r, (A,cT)
is completely observable, Also,there does not exist nontrivial linear
invariant subspaces if O#r.

It is known that this system has chaotic oscillations for b=0.4,
r=4,5 and 0,36 £ 0 £ 0.5, Again, Using Theorem 2, we can
construct an ellipsoidal set Q which contains the chaotic orbits. We omit

the details here. A typical solution corresponding to chaotic oscillations

is shown in Figs. 3 and 4,

VI. CONCLUDING REMARKS
The existence of chaotic oscillations in deterministic nonlinear
dynamical systems is an intriguing phenomenon which is inherent in a number

of mathematical models for real-world systems, For models of populatiaon
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dynamics and economic systems, chaotic oscillations imply the absence ot
predictable "cycles". In fluid models, such oscillations could provide
a mathematical explanation of various turbulence phenomena, Chaotic oscil-
lations could also arise in bilinear systems with linear feedback controls
as demonstrated here. They cannot be predicted or analyzed using conven-
tional methods. Although at the present time, there are a number of mathe-
matical results pertaining to various strange attractors in abstract dy-
namical systems {16],{17]. However, they are not readily applicable for
determining the existence of chaotic oscillations even for the relatively
simple class of nonlinear systems considered here. The establishment of
sufficient conditions for the existence of chaotic oscillations or strange
attractors is a difficult challenging problem in nonlinear system theory.
Here, we have considered only continucus-time systems, Similar re-
sults can be obtained for discrete~time bilinear systems with linear feed-

back controls of the form:

x(k+l) = Ax(k) + u(k)Bx(k),
(43)
u(k) = -K<c,x(k)).

It i{s known that chaotic oscillations can exist in such systems also. In
fact, the scalar equation: x(k+l) = ax(k) =~ axz(k) has chaotic oscillations
for 3,57<ag4.0 [18].

A problem of practical interest is the extension of nonturbulent re-
gime in a fluid system to a broader range of Reynold's numbers. If fluid
turbulence is indeed explainable by the theory of chaotic oscillations,
then it may be possible to achieve the desired result by introducing ap-
propriate feedback controls into the system. Finally, it is of interest
to synthesize nonlinear systems to generate chaotic oscillations or pseudo-

random functions having certain desired properties, This idea has al-
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ready been utilized in a number of pseudo-random number algorithms in

digital comﬁutation.
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FIGURE CAPTIONS

Figure 1: Time domain solution of Lorenz equation with K=1,0=10,b=8/3 and
r=30; initial conditions: x1(0)=x2(0)-50,x3(0)=0.

Figure 2: Projections of the trajectory of Lorenz equation (with parameters
given in Fig.l) in the state space onto the (x,,x,) and (x,,x,)
planes, and the ellipses corresponding co the boundary of Q' in

its principal-axes planes indicated by dashed curves.

Figure 3: Time domain solution of eq., (2) (with matrices (42)) for b=0.%,
r=4,5,0=4,0 and K=-1; initial conditions: x,(0)=x,(0)=0, x,(0)=
4.0.

Figure 4: Projections of the trajectory of eq.(2) (with matrices (42) and
parameters given in Fig.3) in the state space onto the (x,,x,)

and (x,,x,) planes,
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